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ABSTRACT 
Volunteered Geographic Information (VGI), such as 
contributions to OpenStreetMap and geotagged Wikipedia 
articles, is often assumed to be produced locally. However, 
recent work has found that peer-produced VGI is frequently 
contributed by non-locals.  We evaluate this approach across 
hundreds of content types from Wikipedia, OpenStreetMap, 
and eBird, and show that these models can describe more 
than 90% of “VGI flows” for some content types. Our 
findings advance geographic HCI theory, suggesting some 
spatial mechanisms underpinning VGI production. We also 
discuss design implications that can help (a) human and 
algorithmic consumers of VGI evaluate the perspectives it 
contains and (b) address geographic coverage variations in 
these platforms (e.g. via more effective volunteer 
recruitment strategies). 
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INTRODUCTION 
Geotagged Wikipedia articles, OpenStreetMap 
contributions, bird sightings submitted to eBird, and other 
types of  peer-produced volunteered geographic information 
(VGI) represent critical information resources. For instance, 
geotagged Wikipedia articles are among the most-visited 
articles on Wikipedia  [22]. OpenStreetMap underpins many 
consumer maps (e.g. Mapbox, Craigslist, and Apple Maps, 
among others [28]). eBird is the largest biodiversity dataset 
of its kind [61]. VGI also directly enables other important 
endeavors: it helps in disaster relief [8], can aid in 
epidemiology [14] and earthquake prediction [50], and may 
even influence regional economic growth [27].  

Because VGI pervades many aspects of computing and 
beyond, factors that influence its use – e.g. quality and 

completeness – have significant impact. Recent work has 
begun to show that locally-produced VGI contributions are 
higher quality [10] and reflect richer [28] or more diverse 
[60] information. Additionally, local perspectives are known 
to have innate value for certain use cases (e.g. [52]). Thus, 
how and where VGI is produced has important implications 
for its use.  

VGI often has been assumed to be largely local. This idea 
can be traced back to when Michael Goodchild coined the 
term “volunteered geographic information”. Goodchild 
conceptualized a network of “humans as sensors” [18] 
wherein people mostly contribute information that is nearby. 
Goodchild even suggested that “the most important value of 
VGI may lie in what it can tell about local activities in 
various geographic locations”. The intuition behind 
Goodchild’s conception of VGI is easy to understand. After 
all, it is probably easier to contribute nearby because people 
are more likely to be knowledgeable about their home area. 

However, recent work has problematized this “localness 
assumption” [30] for peer-produced VGI. For instance, 
Hecht and Gergle [24] found that up to 93% of peer-
produced VGI content is non-local. This disconnect between 
the localness assumption and the reality of peer-produced 
VGI – and the impact this disconnect has on the value of VGI 
content – calls for an alternative model of how VGI is 
produced. 

In this study, we propose and evaluate one such alternative 
model. Our approach is based on spatial interaction models, 
long used as a means of understanding geographic 
interaction patterns in the social sciences. For instance, 
spatial interaction models are commonly leveraged to 
understand the transportation of goods between countries 
[32,35,36]. 

Here, we apply gravity models – a sub-class of spatial 
interaction models – to understand how VGI is produced. We 
compare gravity models against two baselines that evaluate 
opposing perspectives on VGI production. The first (our 
local production baseline) implements a version of the 
localness assumption, i.e. that where people contribute is 
determined by distance alone. The second (our distance is 
dead baseline) represents the complete inverse of the 
localness assumption, i.e. that people merely contribute 
based on the attractiveness of the contribution target, and 
distance has absolutely no effect. Conceptually, gravity 
models merge the ideas from both of these two baselines – 
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distance impacts where contributions occur, but 
attractiveness of the location also informs where 
contributions occur, and may counteract the effect of 
distance. As a fundamental part of this evaluation, we follow 
recent calls for simultaneously considering multiple online 
communities rather than focusing on a single community 
(e.g. [1,49]). Specifically, we examine three different VGI 
platforms: Wikipedia, OpenStreetMap, and eBird. 

Our gravity models yield an important theoretical insight: we 
find that gravity models perform meaningfully better than 
either baseline and describe more than 90% of the ‘VGI 
flows’ from one region to another in some cases. Overall, this 
suggests that understanding peer production VGI as a form 
of traditional spatial interaction is more effective than 
understanding peer production VGI as a type of local 
production (as in the localness assumption). 

Our results also have implications for multiple types of VGI 
stakeholders and suggest important areas of future work. In 
particular, we discuss how variations in the effects of 
distance problematize some approaches to VGI “editathons”, 
might suggest mechanisms for understanding 
demographically-linked coverage biases in VGI, and help to 
define where local perspectives may be present in VGI and 
where they may be absent. 

RELATED WORK 
Our research is mainly informed by four threads of prior 
work: (1) applications of gravity models in the social 
sciences, (2) studies that explore local contributions in VGI, 
(3) research into geographic variations in VGI content, and 
(4) overall applications of VGI. Below, we describe each of 
these areas and how they informed our work. 
Spatial Interaction Models in the Social Sciences 
Modeling spatial interactions between regions has a long 
history in the social sciences, particularly in the field known 
as economic geography. Gravity models, which date back  to 
1948 [54], are the most common approach to spatial 
interaction modeling. Gravity models aim to capture the 
interaction between two regions based on the ‘gravitational’ 
attractiveness of each region and the friction of distance 
between the two regions. In the almost 70 years of their 
existence, gravity models have been used to effectively 
understand a wide variety of spatial phenomena, primarily in 
two domains: (1) transportation of goods and people (e.g. 
international wheat transactions [35], inter-state gun trades 
[32], international meat trades [36]) and (2) communication 
patterns (e.g. inter-city [37] and international phone calls 
[9]). 

Our research is directly motivated by the effectiveness of 
gravity models in explaining these phenomena. As we 
describe below, we hypothesized that a contribution to one 
region by a VGI contributor based in another region could be 
modeled similarly to a product (e.g. meat, wheat) being 
exported from one region and imported to another. In other 
words, even with the complex dynamics associated 

knowledge production in online communities, we believed 
the spatial dynamics of VGI contribution can be thought of 
as transfers of units of information from one region to 
another. Our results indicate that this hypothesis was 
supported. 

While gravity models have traditionally been a social science 
method, a few studies in HCI and related fields have utilized 
gravity models to model transportation and communication 
phenomena. For instance, Smith et al. [53] used a gravity 
model to model public transit flow and evaluate its potential 
to predict urban socioeconomic status, García-Gavilanes et 
al. [13] used a gravity model to model the flow of tweets 
between countries, Scellato et al. [51] discussed the 
relationship of gravity models to their approaches to 
examining the socio-spatial properties of location-based 
social networks, and techniques related to gravity models 
have been used in other projects as well (e.g. [31,33]). 

Beyond the critical implicit value of better understanding 
VGI production processes, our work also highlights that 
gravity models may be useful in computing domains further 
afield from their typical applications in transportation and 
communication. In this case, we identify that gravity models 
are surprisingly effective at capturing a knowledge 
production relationship between a person and a place as 
mediated by complex online community dynamics. We 
return to this point in the Discussion section. 

Localness and VGI 
As noted above, VGI has been considered a largely local 
phenomenon since the term “volunteered geographic 
information” was coined a decade ago [18]. As a result, the 
extensive and interdisciplinary VGI literature tends to 
presume that VGI is contributed by locals. Studies and 
systems that make a VGI “localness assumption” [30] range 
from studies of VGI contributors’ “spatial footprints” (e.g. 
[39,45]) to epidemiological analyses (e.g. [14]) to 
applications of sentiment analysis algorithms (e.g. [43]). 
Johnson et al. [30] provides a summary of applications of the 
localness assumption in VGI research and practice. 

Recent work, however, has begun to call the localness 
assumption into question. This work – the direct inspiration 
for our research – has found that a substantial proportion of 
VGI contributions are in fact, non-local. For instance, Hecht 
and Gergle [24] observed that between 75 and 93% of edits 
to geotagged Wikipedia articles by anonymous (non-
registered) editors were non-local, depending on the 
language edition (77% for English). Similar findings were 
observed by Hardy et al. [21], who modeled the relationship 
between IP-geolocated anonymous Wikipedia editors and 
the locations of their geotagged contributions (we used this 
approach to inform our local production baselines). Hecht 
and Gergle also observed that geotagged Flickr photos 
tended to be more local – although far from exclusively so – 
with around 50% of photos being taken by people outside 
their home region (100km). Sen et al. [52] found that 
geotagged Wikipedia articles about certain areas are 



significantly more local than others, with articles about sub-
Saharan Africa being written almost entirely by foreigners in 
most language editions. Thebault-Spieker et al. [56] found 
that the 1% of contributors who produce the most 
OpenStreetMap content also have the largest geographic 
contribution ranges. Finally, with respect to social media 
VGI (e.g. geotagged tweets), Johnson et al. [30] also 
observed a substantial degree of non-local contribution, 
averaging roughly around 25% depending on the definition 
of local. 

The above work robustly establishes that the localness 
assumption in peer production VGI is problematic. This 
raises an important question: If peer production VGI is 
largely contributed by non-locals, (1) where are these non-
locals and (2) how do they make their contribution 
decisions? We begin to address both aspects of this question 
in this paper. More generally, being able to effectively model 
peer production VGI contributions can help fill the 
theoretical and practical gap between the localness 
assumption and the reality of peer-produced VGI. 

Geographic Variations in VGI Content 
A growing body of work has shown that demographic factors 
are often associated with geographic variations in the 
quantity and quality of VGI contributions (e.g. [19,28,38]). 
Two demographic factors that are particularly linked to VGI 
content variations are socioeconomic status and the 
rural/urban divide. In short, low-SES and rural areas have 
been found to have fewer and lower-quality VGI 
contributions than wealthier and more urban areas 
[19,28,38]. For instance, in OpenStreetMap, Haklay [19] 
found less and lower-quality content in low-SES regions of 
London. Similarly, in Wikipedia, Johnson et al. [28] reported 
a similar trend concerning the rural/urban divide, observing 
that Wikipedia content about rural areas is often little more 
than bot-written template articles. In social media VGI, Li 
and Goodchild [38] found fewer tweets and photos submitted 
from low-SES regions of California. 

The above work shows that VGI repositories tend to 
advantage urban and wealthier areas (among trends in other 
demographic dimensions). However, when taken together 
with work that suggests the traditional localness assumption 
does not hold in peer-produced VGI, it becomes clear that 
very little is understood about the spatial mechanisms behind 
VGI production. In this paper, we show that by formulating 
peer-produced VGI contributions as a type of spatial 
interaction, we can begin to gain a better understanding of 
these mechanisms. 

Applications of VGI  
There are three main types of applications of VGI: (1) direct 
consumption by readers/users, (2) scientific studies, and (3) 
intelligent technologies and other systems. The success of 
these applications tends to be closely tied to the coverage and 
quality of their underlying VGI datasets. As we discuss 
below, our work here suggests spatial production 

mechanisms that may underlie variations in VGI coverage 
and quality.  

With regard to direct consumption, geotagged articles are 
some of the most persistently popular articles on Wikipedia 
[22] and OpenStreetMap powers many prominent mobile 
maps applications like Apple Maps [28]. In this case, VGI 
coverage and quality have a direct impact that is highly 
visible to the public. Scientific applications of VGI that rely 
on the coverage and quality of VGI include the effects of 
tourism on water quality [34], detecting the epicenter of 
earthquakes [50], and others discussed in more detail by 
Venerandi et al. [57] and Wood et al. [59]. VGI has also 
become a key input to many intelligent technologies, like 
geolocation inference techniques (e.g. [6,31]), among others 
[5,12]. Indeed, geolocation inference (e.g. of people and 
documents), is a domain in which coverage and quality has 
verified importance [29]. Further still, there is some evidence 
that VGI coverage and quality can impact economic growth 
[27]. 

METHODS 
Datasets 
One of the key findings in previous work is that the spatial 
production dynamics in VGI may differ based on the 
community. Therefore, to more robustly evaluate the role of 
spatial interaction dynamics in VGI production, we 
examined three VGI platforms: Wikipedia, OpenStreetMap, 
and eBird. 

Further, contribution in each of these communities is a 
heterogeneous process; that is, some types of content in a 
given community may support different types of spatial 
interactions than other types of content. For example, editing 
Wikipedia articles about national parks (which are globally 
known) may have a different spatial interaction profile than 
editing Wikipedia articles about elementary schools (for 
which information is more locally concentrated). A similar 
dynamic may exist in OSM with respect to, for example, 
encoding state borders versus tracing and labeling 
(“tagging”) specific electrical infrastructure.  

Therefore, within each of our three platforms, we examine 
contributions at the level of the content type. We analyze the 
effect of spatial interaction for each content type 
individually, as well as at the overall platform level. Example 
content types include articles about schools for Wikipedia (as 
defined by WikiProjects), electrical towers for OSM (as 
defined by tags), and bald eagles (Haliaeetus leucocephalus) 
for eBird (as defined by species). In total, we examined 561 
different content types, with 101 content types in Wikipedia, 
192 content types in OpenStreetMap, and 268 content types 
in eBird. 

As is common in VGI research (e.g. [29,38,42,48]), we focus 
on data from a single study area: the continental United 
States. We explore how our research can be expanded to 
other study areas in our discussion of future work below.  



We next describe in more detail the datasets we developed 
for each of our three VGI platforms. 

Wikipedia 
Our Wikipedia dataset focused on contributions to geotagged 
Wikipedia articles. A contribution can be anything from 
creating new article text to fixing a typo. We queried the 
English Wikipedia public database [55] for all contributions 
by registered users to geotagged articles that were saved in 
the year between Oct 2015 and Oct 2016 (resulting in 3.5 
million edits). We then limited the data to articles located 
within the continental United States, leaving 644,480 total 
contributions. 

For each edit, we used its associated WikiProject as the 
content type (approximately 4% of the contributions had no 
WikiProject assigned and were excluded). A WikiProject is 
a self-organized group of people working to improve 
Wikipedia content on a certain topic. For instance, 
WikiProject Schools is a group of contributors who work to 
curate school-related content in Wikipedia. We excluded the 
smallest WikiProjects (with fewer than 1,000 contributions) 
in order to ensure sufficient data to fit a model, resulting in 
101 Wikipedia content types. 
OpenStreetMap 
Our OpenStreetMap dataset focused on node (point) 
contributions. An OpenStreetMap node may be a tree, a 
traffic circle, or a label point for an electrical tower. In 
OpenStreetMap, tags are used to describe different types of 
nodes. A tag consists of a key-value pair, with only one value 
allowed per key. For example, a ‘natural=tree’ tag on a node 
denotes that this node represents a tree and 
‘junction=roundabout’ denotes a traffic circle node.  Entities 
like buildings or roads are normally represented by ‘ways’, 
logical groups of nodes. However, attributes of the way (e.g. 
height of the building, street name) are applied to the way, 
not the with individual nodes, and therefore are not included 
in our dataset. We used the full history of OpenStreetMap 
nodes in the continental USA through February 2014. We 
excluded nodes that did not have one of the 1,000 most-
popular tags (e.g. to eschew typos). From this set of nodes, 
we than randomly sampled 2,000,000 nodes for analysis. 

We used the tags of a node to define its content type(s). As 
such, all tree contributions were defined as one content type, 
all traffic circles as another, and so on. As noted above, we 
excluded the smallest content types (with fewer than 1,000 
contributions) in order to successfully fit our models, 
resulting in 192 total OSM content types. 

eBird 
eBird is an observational citizen science project in which a 
contribution is a bird sighting. As opposed to Wikipedia and 
OSM, in which one does not need to be physically present in 
order to contribute, eBird contributors need to be at or near 
the location of their contributions. This geographic 
proximity requirement makes eBird an interesting 
comparison point to Wikipedia and OpenStreetMap. As is 

shown in the Results section, this comparison point will 
prove to be a valuable reference for understanding 
contributions in OSM and Wikipedia. 

To gather an eBird dataset, we began with the full history of 
eBird observations through April 2015. We then randomly 
sampled 2,000,000 observations from this data set, and again 
limited this data to the continental United States, resulting in 
1,573,798 total observations. To understand spatial 
interaction by content type, we defined content type by 
sightings of a particular bird species. Again, we excluded the 
smallest species (with fewer than 1,000 observations) to 
ensure successful model fitting, resulting in 268 eBird 
content types. 

Defining the Geographic Origin of Contributions  
Prior to modeling spatial interaction processes in peer-
produced VGI, we first had to verify our three datasets 
actually are largely non-local. To do so, we needed to define 
two properties for each contribution: (1) the local (home) 
region of its contributor (i) and (2) the region in which the 
contribution was made (j). We also had to determine the 
spatial scale at which a region would be defined. For this, we 
used the scale of U.S. counties, a common choice in VGI 
analyses [2,3,26,28,42]. 

Determining the county in which a contribution is made (j) 
is straightforward: we use the geotag attached to each 
contribution and perform a reverse geocoding operation. 
Determining the home region of a contributor (i), on the other 
hand, is significantly more complex. Unlike social media 
user profiles, contributors to our VGI repositories have no 
widely-used means by which they state their home location. 
Although some contributors do so voluntarily in venues like 
Wikipedia user pages, participation is low and available only 
in certain repositories. Similarly, prior work has used IP 
address geolocation [21,24] when studying Wikipedia, but 
contributor IP is not available in all of our repositories (and 
would likely suffer accuracy problems at the county scale 
[47]).  Moreover, even within Wikipedia, IP addresses are 
only available for anonymous editors [52]. 

As such, it was necessary to do home location inference to 
determine the county i of each contribution. Fortunately, this 
is a common task, and numerous solutions exist [30]. We 
adopted the home location inference technique known as 
plurality, which defines a contributor’s home region (county) 
as the region (county) in which s/he has made the plurality 
of their contributions; this technique has been used in a 
number of VGI and VGI-related studies (e.g. [26,30,44]). 
We excluded contributors with fewer than 5 contributions in 
order to be confident in the inferred county. Following recent 
calls for researchers to validate home location results across 
multiple inference techniques [30], we also calculated the 
home location of each contributor using the geographic 
median approach [6,30,31]. We found that well over 90% of 
identified home counties were identical across the two 
approaches, giving us high confidence that both approaches 
would lead to very similar results in a spatial interaction 



model. Therefore, we used the plurality approach in our 
analysis. 

To verify that our datasets violate the assumption of being 
local, we examined the percentage of contributions in which 
the contributor’s home county i is not equal to the 
contribution county j. The results of this simple analysis 
made clear that the large degree of non-local contributions 
identified in prior work is replicated in our datasets: only 
26% of Wikipedia contributions, 23% of OSM contributions, 
and 57% of eBird contributions occurred in the plurality-
defined home county of their contributor. 

These findings justified our further exploration of spatial 
interaction as an alternative model of VGI production. 
Below, we describe how we performed these analyses using 
gravity models.  

Gravity Modeling 
Intuition 
Spatial interaction models seek to explain the relationship 
between two locations (i and j) using the distance between 
them and their individual attributes. More formally, they ask 
the following: how does location i interact with location j, 
based on the attributes of i, the attributes of j, and the 
distance between i and j? Gravity models specifically assume 
that these relationships can be modeled through an analogy 
to the basic formula for gravity in the physical world [54]: 

𝐹"# =
𝑀"𝑀#
𝐷"#'

 

When considering the physical gravitational pull two objects 
have on one another, the mass of each object describes their 
attraction to one another, which is moderated by the distance 
between them. The gravity model takes this intuition, and 
applies it to interaction between geographic regions, rather 
than, for example, planets in outer space. The amount of 
interaction – the dependent variable – is commonly 
represented as 𝐹"#  (or ‘flow between regions’). The ‘mass’ 
variables (Mi for region i, and Mj for region j) are typically 
the population of the area, GDP of the area, or other 
‘attraction’ attributes (e.g. [4,32,35,36]). Because gravity 
models are intended to help understand interaction, it is 
critical that the mass variables incorporate both potential 
outflow (leaving i) and potential inflow (entering j). For 
instance, using GDP for both mass variables (Mi and Mj) is 
common for physical processes like international meat 
trading [36], because it accounts for both exports (potential 
outflow from i) and imports (potential inflow to j). The final 
variable in a gravity model, distance (Dij), is often 
operationalized as geodesic (straight-line) distance between 
two regions. Note that Dij has an exponent of 2. In this 
traditional formulation of the gravity model, 2 is the friction 
of distance – the rate at which interactions between i and j 
decay as distance increases. 

Airline travel is a common intuitive example for 
understanding how these variables relate to one another. 

Consider the case of three cities: New York City, Los 
Angeles, and Bangor, Maine (a city of about 33,000 
residents), with the mass variables set to the population of 
each city. In this case, population operationalizes both the 
potential outflow from a city and the potential inflow to a city 
(more people usually means more business and personal 
travel, etc.). New York City and Los Angeles are on opposite 
coasts of the United States, and thus have a large Dij. 
However, many people fly back and forth between New 
York City and Los Angeles due to the large ‘attraction’ (i.e. 
large product of masses) between the two cities, which 
overcomes the large distance (large Dij). On the other hand, 
despite the much smaller Dij between Bangor and New York 
City, the tiny mass of Bangor counteracts the shorter 
distance, and many fewer people fly between Bangor and 
New York City.  

Applying Gravity Models to Our Datasets 
In the traditional formulation of the gravity model (above) 
the friction of distance is defined as -2, and the weights of Mi 
and Mj are held constant, predefining the degree to which 
they affected Fij. Because of this, the traditional form was 
generalized and transformed to a log-linear OLS model 
(below) [11]. The friction of distance was no longer held 
constant (at -2), and Mi, Mj, and Dij all became independent 
variables, predicting the dependent variable Fij. 

𝐹"# =
𝑀"
()𝑀"

(*
"
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This straightforward approach, however, causes problems 
when the variables contain zeroes. After all, the natural log 
of zero is undefined. Further, the common practice of adding 
a small constant (such that there are no zeroes) produces 
biased estimates [11]. To address this problem, we employ 
one of the most common solutions (recommended by [11]): 
fitting a Poisson linear regression, which does not risk biased 
estimates in the scenario mentioned above. It is common to 
take the natural log of all independent variables, so we use 
this strategy in our models.  

The first step in operationalizing our gravity models is 
defining i and j. We use the same definitions as before: i is 
the ‘home’ region of a contributor, and j is the region in 
which a contribution is made. Every inter-county interaction 
is thus modeled as someone based in county i contributing 
information about county j, aggregated over all contributions 
in a content type. In other words, if i = Wayne County, 
Michigan and j = Baltimore County, Maryland, the goal of 
the models is to accurately predict the number of 
contributions about places in Baltimore County made by 
people whose home county is Wayne County (Fij). To make 
these predictions, we define Mi to be the number of 
contributors from county i (e.g., Wayne County) that make 
contributions elsewhere (potential outflow), and Mj to be the 
number of contributors from anywhere that make 



contributions (potential inflow) into county j, (e.g. Baltimore 
County. We follow common practice, and consider Dij to be 
the geodesic distance between i and j. We make these 
predictions separately for each content type in each 
repository. In other words, we run a separate gravity model 
for each of our 561 (101 Wikipedia + 192 OSM + 268 eBird) 
content types.  

Traditionally, predictions for intra-regional flow are 
excluded when constructing gravity models, for two primary 
reasons. First, intra-regional flows are not intuitive for many 
physical processes, e.g. we generally do not speak of a 
country trading wheat with itself. Second, it is not intuitive 
what the distance from a region to itself ought to be, and 
using zero can be problematic for reasons mentioned above.   

However, for our purposes, these reasons do not apply. First, 
in our data, non-trivial quantities of VGI content is locally 
produced (intra-regional) – as much as 43% in the case of 
eBird. Second, because we follow more recent common 
practice and implement our gravity models as Poisson 
regressions, defining a small intra-regional distance will not 
cause biased estimates. Therefore, we adopt two approaches 
for intra-regional distances that have been used in the 
literature [16,20]:  

1.  constant 1 km for every region, and 
2.   4

'
∗ 	:𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙_𝑎𝑟𝑒𝑎 . 

We compare results from both these approaches, which we 
term constant-distance and regional-distance, respectively.  

Because we build so many models, statistical intuition 
suggests that a small portion of any significant results would 
be due to chance. However, as we will see below, our overall 
results are sufficiently widespread that they are quite robust 
against the occasional Type I error. 

Contextualizing Gravity Models 
To provide context for our evaluation of how well gravity 
models describe VGI production, we also construct two 
baselines against which to compare our gravity models. To 
make sure our baselines and our gravity models are directly 
comparable, we construct both baseline approaches with a 
Poisson regression. As is the case in our gravity models, all 
variables we include in these models are log-scaled.  

Our first baseline is a set of distance is dead models. These 
represent an interpretation of VGI production in which the 
distance between i and j is irrelevant. After all, in Wikipedia 
and OpenStreetMap there are no technical limitations 
preventing a contributor from contributing about anywhere 
in the world. This model seeks to predict Fij with only Mi and 
Mj as independent variables. If indeed these models perform 
better than our gravity models, it will indicate that distance 
is unimportant in VGI production.  

We also have our local production baseline, which 
represents an interpretation of VGI production in which the 
localness assumption holds. More formally, this baseline 

postulates that distance between i and j is the only 
meaningful factor in why contributions flow between i and j. 
This model seeks to predict Fij using only Dij as an 
independent variable, for each content type. Because of the 
two different approaches to intra-regional distances we 
discuss above, this baseline is composed of two different sets 
of models, one for each approach. If these models perform 
better than our gravity models, it will indicate that attributes 
of i and j have no bearing on VGI production, and would 
provide support for the localness assumption. 

To properly evaluate if gravity models are even effective at 
characterizing VGI production, and because the literature 
suggests two alternatives for incorporating intra-zonal 
predictions into gravity models, we construct five separate 
models, across hundreds of different content types. 
Specifically, we construct one distance is dead baseline, two 
instances of our local production baselines, and two 
instances of gravity models. We then compare all five, and 
evaluate which are most successful at describing peer-
produced VGI.   

Summary of Methods 
To summarize: 

• Mi is the number of contributors from county i, Mj is 
the number of contributors who contribute in county 
j, and Dij is geodesic distance between i and j.  

• We construct all models as Poisson regressions, 
following the recommendations of [11]. 

• Because some VGI contributions occur in the same 
county where their contributor lives, we evaluate two 
approaches for defining Dij when i and j are the same 
county: 1 km, and 4

'
∗ 	:𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙_𝑎𝑟𝑒𝑎. This is true 

for both our local production baseline, and our gravity 
models. 

• We construct five different models for each of the 561 
different types of content. 

 

RESULTS 
We now turn to our results, first evaluating if our gravity 
models are even a reasonable approach to understanding VGI 
production, and then engaging in a deeper exploration into 
the effect of distance in spatial interaction models.  

Evaluating Model Fit 
Informed by their long history and theoretical underpinnings, 
we believed that gravity models would likely be effective 
descriptors of VGI production, though this was by no means 
guaranteed. Therefore, our first task was to evaluate this 
conjecture. We did so by comparing the pseudo-R2 values 
from each content type, across our two local production 
baselines, our distance is dead baseline, and both instances 
of our gravity models.  

Figure 1 shows the distributions of pseudo-R2 values along 
the x-axis (as measured by the pseudo-R2 metric suggested 
in [7]). The y-axis lists each of our five models, and each 



chart indicates a different platform. The top three models are 
baselines, and the bottom two show our two different 
instantiations of gravity models.  

To evaluate differences between distributions, we use a 
notched boxplot. In a notched boxplot, the medians of two 
distributions can be considered significantly different when 
the boxplot notches (the indentation in the middle) do not 
overlap [41]. However, because we are testing the 
significance of differences between groups of model output, 
the distributional assumptions are unclear and significance 
should be interpreted with some caution. Effect sizes, on the 
other hand, do not have this issue. 

Figure 1 shows that all six gravity models perform better than 
the distance is dead or local production baselines (five of 
them significantly so). Put another way: the gravity model 
medians are larger, and in most cases the notches in our 
gravity model boxplots do not overlap with the notches in 
our baseline boxplots. Examining the medians of each 
distribution in more detail, the general trend is clear: spatial 
interaction models are very successful at describing VGI 
contributions with median pseudo-R2s as high as 0.99 in 
some cases. eBird has the lowest median pseudo-R2s, at 0.74 
and 0.72 for the constant-distance gravity models and 
regional-distance gravity models respectively. Wikipedia 
content types show better fits than eBird content types, with 
median pseudo-R2s of 0.82 and 0.91 for the constant-
distance and regional-distance gravity models. 
OpenStreetMap content types tend to show the highest 
median pseudo-R2s, at 0.99 and 0.98 (for constant-distance 
and regional-distance, respectively). 

Focusing on the baseline model distributions in more detail, 
we noticed some striking differences between platforms. In 
eBird, a platform where contributors must travel to make 
contributions, the distance is dead and local production 
baselines tend to be much more similar in terms of model fit. 
This is in contrast to OpenStreetMap and Wikipedia, where 
the distance is dead models fit substantially better than the 
local production models.   

Comparing the pseudo-R2s of the baselines to those of the 
gravity models provides additional insight into how the mass 
and distance affect the model fit of our gravity models. Our 
gravity models fit quite well, and in OpenStreetMap and 
Wikipedia, the distance is dead baseline models also fit quite 
well. This suggests that in the ‘wiki’ platforms (Wikipedia 
and OpenStreetMap) where “armchair editing” is possible, 
the mass variables drive a substantial portion of the gravity 
model fit. Put another way: in OpenStreetMap and 
Wikipedia, the content type and its attraction dynamics 
between regions matters much more than geographic 
distance for how contributions flow between regions. 
However, in eBird both distance and content type matter for 
where people contribute. Someone may contribute to 
Wikipedia about famous golf courses in Florida, regardless 
of where they live. Conversely, while some bird species may 
be rare or more interesting, a bird-watcher still must travel to 
contribute about these rare birds. 

The high-level conclusions of our results at this stage are 
clear. These findings suggest that VGI production in these 
platforms indeed can be understood as a gravity model 
spatial interaction process. Even in OpenStreetMap and 
Wikipedia – where contribution is not an obviously physical 
process – most of our gravity models still have more 
explanatory power than our distance is dead baselines. 
Further still, while the distance is dead baseline indicates that 
the mass variables play a substantial role in model fit for 
OpenStreetMap and Wikipedia, the addition of a distance 
variable does improve model performance. This means in 
spite of fact that a contributor does not need to move at all to 
edit Wikipedia or OpenStreetMap, there is a degree to which 
contributions in these platforms are impacted by how far 
away they are from a contributor.  
Interpreting Our Models 
Our results in the previous subsection indicate that our 
gravity models perform better than our baselines, and 
effectively explain a large portion of the spatial contribution 
decisions of VGI contributors. Therefore, we now limit our 

Figure 1: On the x-axis, each plot shows the model fit (pseudo-R2). The y-axis shows each of the five models we are evaluating.  
Each distribution excludes outliers. The top three are baseline models, and the bottom two are gravity models. 



discussion of results to our gravity models. While we present 
both our constant-distance and regional-distance models, we 
will focus our discussion of results around constant-distance 
gravity models, because all three perform significantly better 
than our distance is dead baseline (whereas only two 
regional-distance models outperform the distance is dead 
baseline). We exclude 22 types of content with variables that 
are not significant (predominantly from OSM), to ensure all 
distributions are comparable. 

We focus specifically on the Dij (friction) coefficient in order 
to shed light on the degree to which contributions are likely 
to be local. Recall that the more negative a friction 
coefficient is (further left in Figure 2), the stronger friction 
effect exists. 

Figure 2 shows the distributions of our Dij coefficients. On 
the left are the coefficients from our constant-distance 
instance of a gravity model, and on the right are the 
coefficients from our regional-distance models. Each 
boxplot represents a different platform. eBird is on top, 
OpenStreetMap is in the middle, and Wikipedia on the 
bottom. 

Immediately visible in Figure 2 is that there are clear 
differences in the friction coefficients between eBird and 
Wikipedia. Content types from both Wikipedia and eBird are 
quite clustered together, and the platforms themselves center 
around different points on the friction of distance spectrum. 
In some cases, eBird has species that have similar friction 
coefficients to some Wikipedia content types, but the overlap 
between these distributions is small. Surprisingly, content 
types from OpenStreetMap have a much wider overall 
distribution – some are much closer to eBird content types, 
and others are much closer to Wikipedia content types. Put 
simply, distant contributions are much more expensive in 
eBird than Wikipedia, and OpenStreetMap contains some 
types of content that have similar friction coefficients to 
fundamentally physical processes like eBird.  

To explore these friction coefficients in more detail, we now 
discuss some examples from each platform, moving from left 
to right, and from top to bottom (highest friction coefficient 
to lowest, eBird to Wikipedia). 

eBird 
Near the high-friction end of the spectrum is the purple finch 
(Haemorhous purpureus) sighting content type, with a 
friction coefficient of -1.45. Succinctly, many contributions 
of this bird would be highly ‘local’, or nearby the 
contributors’ home. One hypothesis for why this might be 
the case is that the purple finch has a very large range, 
spanning most of the eastern United States. This means that 
even though eBird contributors might upload reports of 
purple finch sightings on an everyday basis, while traveling 
it perhaps might be somewhat boring to continue to upload 
sightings of the same species when there are novel species 
available.  

On the low end of the friction spectrum for eBird we see the 
ladder-backed woodpecker (Picoides scalaris) with a friction 
coefficient of -0.85. The ladder-backed woodpecker has a 
range that contains very popular tourist areas in the United 
States (e.g. Las Vegas, the Grand Canyon). As such, one 
hypothesis is that this bird is often reported while eBird users 
are on vacation in these areas, thereby making these reports 
distinctly non-local (i.e. having a small friction of distance). 

OpenStreetMap 
The OpenStreetMap content types are much more 
heterogeneous, and have a much wider distribution than 
either of the other two platforms. Near the left-hand side of 
the OSM distribution is ‘addr:city=San Diego’, which has a 
friction coefficient of -2.58. Because San Diego is a city of 
1.5 million people (has a large mass), it is likely that this 
friction coefficient reflects a highly-local bulk import done 
by a resident of San Diego. This would cause a large number 
of highly local contributions, and thus a high friction of 
distance. Another interesting example is ‘power=tower’  
with a friction coefficient of -0.66. This tag might have a 
weaker friction of distance for a simple reason: using satellite 
imagery, it is fairly straightforward to identify large steel 
structures intended for holding electricity lines. A 
contributor would only need to know where electricity is 
commonly run, but would not require any local knowledge 
or context.  

Wikipedia 
What is initially clear is that the Wikipedia friction 
coefficients tend to be quite similar to one another. Starting 
from the left-hand side of the distribution is WikiProject 
Politics, with a friction coefficient of -1.05. Contributions to 

Figure 2: These plots show our Dij variable coefficients, for each platform. On the left are our constant-distance models, and the 
right shows our regional-distance models. Both exclude outliers. 



WikiProject politics decrease nearly linearly as the places 
they contribute about get further away. Intuitively, it seems 
likely that people are less interested or less aware of the 
details of politics that are further away from them – as the 
common saying goes: “all politics is local”.  On the other end 
of the spectrum is WikiProject Golf, with a friction 
coefficient of -0.1. This friction coefficient is quite low. One 
reason this may be the case is the topic itself – to participate 
in WikiProject Golf, a contributor would likely be highly 
motivated by Golf as a topic, and may treat golf courses as 
vacation destinations as well. The combination of being 
highly motivated and traveling to play Golf would lead to a 
quite low friction coefficient.  

Summary and Generalizable Conclusions 
To summarize our results, we found that in all our content 
types, gravity models are very effective at describing VGI 
production. Additionally, we found that contributions in 
Wikipedia and OpenStreetMap are largely driven by 
attraction between regions, whereas distance is much more 
important when describing eBird contribution trends. 
Further, in two of our platforms (eBird and Wikipedia), the 
friction coefficients are quite consistent, indicating that some 
platforms facilitate a specific ‘style’ of spatial interaction. In 
contrast, in OpenStreetMap the content types span a large 
range of friction coefficients.  

DISCUSSION 
Our results have implications for a several constituencies and 
research areas. Below, we detail these implications.  

Implications for VGI Contributors and Platform Managers 
Our model fits align well with an idea implicit in the editing 
ethos of some large VGI communities – the belief that 
distance has relatively minimal impact on VGI contribution. 
For instance, Wikipedia states “anyone can edit almost every 
page” [58], and OpenStreetMap’s introductory 
documentation says “You can map from your armchair” 
[46]. From a purely technical perspective, it is just as easy 
for a person who lives in e.g. Montreal to log into Wikipedia 
or OSM and contribute information about McGill University 
as it is for that person to contribute information about, for 
instance, Nazarbayev University in Kazakhstan.  

This raises a key question: what limits some content types 
from being advantaged by the affordances to map anywhere 
or write articles about anywhere from “armchairs”? A 
number of factors likely are responsible, and may help 
explain reasons behind the attraction processes shown in our 
models. For example, physical world processes are still 
highly correlated with knowledge about a region, and 
knowledge about a region can help one more easily write a 
Wikipedia article, do OSM mapping, or see and recognize a 
specific bird. Regional boosterism may also be at play, 
causing people to build up information about known 
locations. However, future work should seek to examine the 
presence and strength of these and other factors.  One 
approach might be a qualitative study to understand where 
people choose to contribute, and why. This exploratory 

approach would help shed light on some of the mechanisms 
that underpin the large attraction processes we see in our 
results. 

Our work has several implications for the design of VGI 
communities and platforms. Our results present challenges 
for a particularly common means by which VGI 
communities attempt to address coverage issues: 
“editathons”. Editathons are usually in-person events and are 
typically held in urban areas where many potential new 
contributors can attend. Our results show that – although the 
various aspects of gravity models can have complex 
interactions – for high-friction content types these types of 
in-person contribution drives are unlikely to affect the 
variations in coverage. To do so requires localized 
contributors, and it is unlikely that editathons occur in places 
where contributors are needed most. This is especially 
troubling as editathons are often funded by the cash-strapped 
organizations that operate VGI platforms (e.g. the 
Wikimedia Foundation). Our results suggest that 
organizations like the OpenStreetMap Foundation may want 
to redirect some of their resources towards efforts that work 
towards these goals. 

Implications for Coverage Biases 
More generally, our work may help to reveal mechanisms for 
the coverage biases linked to socioeconomic status, the 
rural/urban spectrum, and other demographics. One 
hypothesis as to the mechanisms for this coverage variation 
is that “self-focus bias” is playing a role [23]. That is, people 
are contributing about places near where they have lived, 
and, given the demographics of VGI contributors (e.g. [17]), 
it is likely that they will have lived in higher-SES areas and 
urban areas. Our results provide a direct means of testing this 
hypothesis: If this is true, then content types for which the 
friction of distance is high may exhibit more coverage bias 
then content types for which armchair mapping is more 
common. Evaluating this hypothesis is an immediate 
opportunity for future work. 

Our results also highlight a hypothesis for a potential second 
cause of these biases: preferential attachment. It may be that 
high-SES areas and urban areas were some of the first areas 
to be covered in these datasets, thereby making them more 
“attractive”. Because of this attraction – and the importance 
of attraction shown in our baseline models more generally 
– these areas’ early leads in coverage became effectively 
permanent. More generally, our baseline models suggest 
that, at least for OpenStreetMap and Wikipedia, preferential 
attachment may be a particularly potent force. Testing this 
“geographic preferential attachment” hypothesis is also an 
excellent direction of future work. 

Implications for Algorithms 
Hecht and Gergle showed that AI systems that use VGI for 
world knowledge can adopt the perspectives of their 
underlying VGI datasets [15]. Since our results suggest that 
certain VGI content types will innately contain more local 
perspectives than others, this suggests that VGI-based AI 



systems that rely on certain types of data may innately be 
biased towards perspectives that are more or less local. 

Implications for Human Consumers 
The exact same biases that may affect algorithms with 
respect to non-local and local perspectives will also affect 
human consumers of VGI. For instance, our results suggest 
that Wikipedia content about golf courses will be less local 
than its content about politics. This highlights a number 
directions of future work. Two of the most interesting might 
be (1) building tools that can surface the fact that local 
perspectives may not be present for certain content types and 
(2) using this surfacing to perhaps incentivize more 
contributions from the local area (e.g. using a prompt like 
“This article about your local golf course was written entirely 
by non-locals. Do you have any local expertise to add?”) 

Implications for Gravity Models and Social Computing 
As discussed above, the predominant use of gravity models 
in HCI and social computing contexts have tended to be in 
the traditional gravity model domains of transportation and 
communication (using datasets of interest to the HCI and 
social computing communities). Our results suggest that 
gravity models are also quite useful for understanding 
processes further afield from transportation and 
communication. At the very least, this work suggests that 
researchers who are examining the role of distance in a 
geographic HCI [25] process should consider utilizing 
gravity model techniques. The primary challenge of moving 
beyond simple distance involves operationalizing the mass 
variables, and our discussion of our implementation of mass 
can provide a reference point along these lines. 

One particularly interesting future application builds directly 
on another prior application of gravity models. Gravity 
models are commonly used in planning [40] to identify 
where to place, e.g., Coca-Cola distribution centers. By 
considering geographic attraction and distance, planners 
maximize the region a distribution center serves, while 
minimizing the number (and cost) of distribution centers. By 
analogy, future work could use gravity models to help 
allocate volunteer resources within peer production 
platforms. These adapted models could be used to predict 
where contributions are likely to go and which places will 
never receive contributions. These models can also predict 
where to focus recruitment to maximize the region 
contributors serve and perhaps mitigate the geographic 
biases shown in prior literature. 
FUTURE WORK AND LIMITATIONS 
In constructing our gravity models, we made a number of 
decisions that open up opportunities for future work. First, 
we used a plurality inference method to infer home regions 
and verified that a geographic median approach was unlikely 
to change our results. Recent work [56] has used a plurality 
inference method to identify where contributors focus 
instead of where they live. Operationalizing plurality 
assignments as focus regions provides a different view on 
our results, one in which home regions become regions of 

substantial knowledge or expertise. In this view, we believe 
our conclusions would largely remain unchanged, e.g. 
different content types would still have different degrees of 
local expertise associated with them. This alternative 
conception of plurality does, however, re-emphasize a 
suggestion we made above: future work should develop a 
deeper understanding of the attraction processes – and their 
relationship to local expertise – that seem to drive a 
substantial amount of contribution. Future work should also 
consider additional home location inference approaches as a 
way to account for contributors potentially being ‘local 
experts’ in multiple regions.  

Second, we did not distinguish between human contributors 
and bots in Wikipedia, or bulk imports in OpenStreetMap. 
After all, bulk imports are a key part of these ecosystems, 
especially for OpenStreetMap. In a quick analysis removing 
all bulk imports from our OpenStreetMap data, we do not see 
substantial changes in the distributions of either model fit, or 
friction of distance. Future work should explore additional 
content types, with an eye towards similarities and 
differences between human behavior and bots or bulk 
imports (e.g. [28]). 

Finally, it is standard practice in the VGI literature to focus 
on a single study site, as we did here (e.g. [29,38,48]). 
However, future work in this space should likely seek to 
select study sites in different human geographic regions than 
those considered here in order to determine whether the 
distance relationships change in different human geographic 
contexts.  
CONCLUSION 
In this paper, we showed that VGI contributions can be 
modeled effectively using spatial interaction techniques, and 
gravity models in particular. We also explored the 
implications of these findings for our understanding of VGI, 
for stakeholders currently managing large VGI communities, 
and for the development of future VGI platforms. 

ACKNOWLEDGEMENTS 
This research was supported by NSF grants IIS-1707319, 
IIS-1707296, IIS-0964695, IIS-1111201, and IIS-1218826. 
This research was also supported by the Wikimedia 
Foundation. 

REFERENCES 
1. Judd Antin, Ed H. Chi, James Howison, Sharoda Paul, 

Aaron Shaw, and Jude Yew. 2011. Apples to 
Oranges?: Comparing Across Studies of Open 
Collaboration/Peer Production. In Proceedings of the 
7th International Symposium on Wikis and Open 
Collaboration (WikiSym ’11), 227–228. 
https://doi.org/10.1145/2038558.2038610 

2. Michael Bailey, Ruiqing (Rachel) Cao, Theresa 
Kuchler, Johannes Stroebel, and Arlene Wong. 2017. 
Measuring Social Connectedness. National Bureau of 
Economic Research. https://doi.org/10.3386/w23608 



3. Saeideh Bakhshi, Partha Kanuparthy, and Eric Gilbert. 
2014. Demographics, weather and online reviews: a 
study of restaurant recommendations. 443–454. 
https://doi.org/10.1145/2566486.2568021 

4. Jonathan M. Bossenbroek, Clifford E. Kraft, and 
Jeffrey C. Nekola. 2001. Prediction of Long-Distance 
Dispersal Using Gravity Models: Zebra Mussel 
Invasion of Inland Lakes. Ecological Applications 11, 
6: 1778–1788. https://doi.org/10.1890/1051-
0761(2001)011[1778:POLDDU]2.0.CO;2 

5. Ronan Collobert and Jason Weston. 2008. A Unified 
Architecture for Natural Language Processing: Deep 
Neural Networks with Multitask Learning. In 
Proceedings of the 25th International Conference on 
Machine Learning (ICML ’08), 160–167. 
https://doi.org/10.1145/1390156.1390177 

6. Ryan Compton, Craig Lee, Jiejun Xu, Luis Artieda-
Moncada, Tsai-Ching Lu, Lalindra De Silva, and 
Michael Macy. 2014. Using publicly visible social 
media to build detailed forecasts of civil unrest. 
Security Informatics 3, 1: 4. 
https://doi.org/10.1186/s13388-014-0004-6 

7. Stefany Coxe, Stephen G. West, and Leona S. Aiken. 
2009. The Analysis of Count Data: A Gentle 
Introduction to Poisson Regression and Its 
Alternatives. Journal of Personality Assessment 91, 2: 
121–136. https://doi.org/10.1080/00223890802634175 

8. Martin Dittus, Giovanni Quattrone, and Licia Capra. 
2017. Mass Participation During Emergency 
Response: Event-centric Crowdsourcing in 
Humanitarian Mapping. In Proceedings of the 2017 
ACM Conference on Computer Supported Cooperative 
Work and Social Computing (CSCW ’17), 1290–1303. 
https://doi.org/10.1145/2998181.2998216 

9. Stuart Carter Dodd. 1950. The Interactance 
Hypothesis: A Gravity Model Fitting Physical Masses 
and Human Groups. American Sociological Review 15, 
2: 245–256. https://doi.org/10.2307/2086789 

10. Melanie Eckle. Quality Assessment of Remote 
Mapping in OpenStreetMap for Disaster Management 
Purposes. Retrieved September 24, 2015 from 
http://iscram2015.uia.no/wp-
content/uploads/2015/05/5-1.pdf 

11. Robin Flowerdew and Murray Aitkin. 1982. A Method 
of Fitting the Gravity Model Based on the Poisson 
Distribution*. Journal of Regional Science 22, 2: 191–
202. https://doi.org/10.1111/j.1467-
9787.1982.tb00744.x 

12. Evgeniy Gabrilovich and Shaul Markovitch. 2007. 
Computing semantic relatedness using Wikipedia-
based explicit semantic analysis. In IJcAI, 1606–1611. 

13. Ruth García-Gavilanes, Yelena Mejova, and Daniele 
Quercia. 2014. Twitter Ain’t Without Frontiers: 
Economic, Social, and Cultural Boundaries in 
International Communication. In Proceedings of the 
17th ACM Conference on Computer Supported 

Cooperative Work & Social Computing (CSCW ’14), 
1511–1522. https://doi.org/10.1145/2531602.2531725 

14. Nicholas Generous, Geoffrey Fairchild, Alina 
Deshpande, Sara Y Del Valle, and Reid Priedhorsky. 
2014. Global Disease Monitoring and Forecasting with 
Wikipedia. PLoS Computational Biology 10, 11: 
e1003892. 
https://doi.org/10.1371/journal.pcbi.1003892 

15. Darren Gergle and Brent Hecht. 2010. The tower of 
Babel meets web 2.0. In the 28th international 
conference, 291. 
https://doi.org/10.1145/1753326.1753370 

16. M. Gibson and M. Pullen. 1972. Retail turnover in the 
East Midlands: A regional application of a gravity 
model. Regional Studies 6, 2: 183–196. 
https://doi.org/10.1080/09595237200185161 

17. Ruediger Glott, Philipp Schmidt, and Rishab Ghosh. 
2010. Wikipedia Survey - Overview of Results.  

18. Michael F Goodchild. 2007. Citizens as sensors: the 
world of volunteered geography. GeoJournal 69, 4: 
211–221. https://doi.org/10.1007/s10708-007-9111-y 

19. Mordechai Haklay. 2010. How good is volunteered 
geographical information? A comparative study of 
OpenStreetMap and Ordnance Survey datasets. 
Environment and Planning B: Planning and Design 
37, 4: 682–703. https://doi.org/10.1068/b35097 

20. Mark E Hanson. 1966. Project METRAN: an 
integrated, evolutionary transportation system for 
urban areas. Cambridge, Mass.: MIT Press. 

21. Darren Hardy, James Frew, and Michael F Goodchild. 
2012. Volunteered geographic information production 
as a spatial process. International Journal of 
Geographical Information Science 26, 7: 1191–1212. 
https://doi.org/10.1080/13658816.2011.629618 

22. Brent Hecht. 2013. The Mining and Application of 
Diverse Cultural Perspectives in User-generated 
Content. Northwestern University, Evanston, IL, USA. 

23. Brent Hecht and Darren Gergle. 2009. Measuring Self-
Focus Bias in Community-Maintained Knowledge 
Repositories. In Communities and Technologies 2009: 
4th International Conference on Communities and 
Technologies, 11–19. 

24. Brent Hecht and Darren Gergle. 2010. On the 
“localness” of user-generated content. 229. 
https://doi.org/10.1145/1718918.1718962 

25. Brent Hecht, Johannes Schöning, Muki Haklay, Licia 
Capra, Afra J Mashhadi, Loren Terveen, and Mei-Po 
Kwan. 2013. Geographic human-computer interaction. 
In CHI ’13 Extended Abstracts on Human Factors in 
Computing Systems, 3163. 
https://doi.org/10.1145/2468356.2479637 

26. Brent Hecht and Monica Stephens. 2014. A Tale of 
Cities: Urban Biases in Volunteered Geographic 
Information. In Eighth International AAAI Conference 
on Weblogs and Social Media. Retrieved February 13, 
2015 from 



http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14
/paper/view/8114 

27. Marit Hinnosaar, Toomas Hinnosaar, Michael 
Kummer, and Olga Slivko. 2017. Wikipedia Matters.  

28. Isaac L. Johnson, Yilun Lin, Toby Jia-Jun Li, Andrew 
Hall, Aaron Halfaker, Johannes Schöning, and Brent 
Hecht. 2016. Not at Home on the Range: Peer 
Production and the Urban/Rural Divide. 13–25. 
https://doi.org/10.1145/2858036.2858123 

29. Isaac L. Johnson, Connor J McMahon, Johannes 
Schöning, and Brent Hecht. 2017. The Effect of 
Population and “Structural” Biases on Social Media-
based Algorithms -- A Case Study in Geolocation 
Inference Across the Urban-Rural Spectrum. In 
Proceedings of the 35th Annual ACM Conference on 
Human Factors in Computing Systems (CHI 2017). 
http://dx.doi.org/10.1145/3025453.3026015 

30. Isaac L. Johnson, Subhasree Sengupta, Johannes 
Schöning, and Brent Hecht. 2016. The Geography and 
Importance of Localness in Geotagged Social Media. 
515–526. https://doi.org/10.1145/2858036.2858122 

31. David Jurgens, Tyler Finethy, James McCorriston, Yi 
Tian Xu, and Derek Ruths. 2015. Geolocation 
prediction in twitter using social networks: A critical 
analysis and review of current practice. In Proceedings 
of the 9th International AAAI Conference on Weblogs 
and Social Media (ICWSM). 

32. Leo H. Kahane. 2013. Understanding the Interstate 
Export of Crime Guns: A Gravity Model Approach. 
Contemporary Economic Policy 31, 3: 618–634. 
https://doi.org/10.1111/j.1465-7287.2012.00324.x 

33. Krishna Y Kamath, James Caverlee, Kyumin Lee, and 
Zhiyuan Cheng. 2013. Spatio-temporal dynamics of 
online memes: a study of geo-tagged tweets. In 
Proceedings of the 22nd international conference on 
World Wide Web, 667–678. 

34. Bonnie L Keeler, Spencer A Wood, Stephen Polasky, 
Catherine Kling, Christopher T Filstrup, and John A 
Downing. 2015. Recreational demand for clean water: 
evidence from geotagged photographs by visitors to 
lakes. Frontiers in Ecology and the Environment 13, 2: 
76–81. https://doi.org/10.1890/140124 

35. Won W. Koo and David Karemera. 1991. 
Determinants of World Wheat Trade Flows and Policy 
Analysis. Canadian Journal of Agricultural 
Economics/Revue canadienne d’agroeconomie 39, 3: 
439–455. https://doi.org/10.1111/j.1744-
7976.1991.tb03585.x 

36. Won W. Koo, David Karemera, and Richard Taylor. 
1994. A gravity model analysis of meat trade policies. 
Agricultural Economics 10, 1: 81–88. 
https://doi.org/10.1016/0169-5150(94)90042-6 

37. Gautier Krings, Francesco Calabrese, Carlo Ratti, and 
Vincent D. Blondel. 2009. Urban gravity: a model for 
inter-city telecommunication flows. Journal of 
Statistical Mechanics: Theory and Experiment 2009, 

07: L07003. https://doi.org/10.1088/1742-
5468/2009/07/L07003 

38. Linna Li, Michael Goodchild, and Bo Xu. 2013. 
Spatial, temporal, and socioeconomic patterns in the 
use of Twitter and Flickr. Cartography and 
Geographic Information Science 40, 2: 61–77. 
https://doi.org/10.1080/15230406.2013.777139 

39. Michael D Lieberman and Jimmy Lin. 2009. You Are 
Where You Edit : Locating Wikipedia Contributors 
Through Edit Histories. Proceedings of the Third 
International ICWSM Conference: 106–113. 

40. M J Hodgson. 1978. Toward More Realistic Allocation 
in Location—Allocation Models: An Interaction 
Approach. Environment and Planning A: Economy and 
Space 10, 11: 1273–1285. 
https://doi.org/10.1068/a101273 

41. Robert McGill, John W. Tukey, and Wayne A. Larsen. 
1978. Variations of Box Plots. The American 
Statistician 32, 1: 12–16. 
https://doi.org/10.2307/2683468 

42. Alan Mislove, Sune Lehmann, Yong-Yeol Ahn, Jukka-
Pekka Onnela, and J Niels Rosenquist. 2011. 
Understanding the Demographics of Twitter Users. 
ICWSM 11: 5th. 

43. Lewis Mitchell, Morgan R. Frank, Kameron Decker 
Harris, Peter Sheridan Dodds, and Christopher M. 
Danforth. 2013. The Geography of Happiness: 
Connecting Twitter Sentiment and Expression, 
Demographics, and Objective Characteristics of Place. 
PLoS ONE 8, 5: e64417. 
https://doi.org/10.1371/journal.pone.0064417 

44. Mohamed Musthag and Deepak Ganesan. 2013. Labor 
Dynamics in a Mobile Micro-task Market. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI ’13), 641–650. 
https://doi.org/10.1145/2470654.2470745 

45. Pascal Neis and Alexander Zipf. 2012. Analyzing the 
Contributor Activity of a Volunteered Geographic 
Information Project — The Case of OpenStreetMap. 
ISPRS International Journal of Geo-Information 1, 3: 
146–165. https://doi.org/10.3390/ijgi1020146 

46. OpenStreetMap. Armchair Mapping - OpenStreetMap 
Wiki. Retrieved October 24, 2016 from 
http://wiki.openstreetmap.org/wiki/Armchair_mapping 

47. Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, 
Benoit Donnet, and Bamba Gueye. 2011. IP 
Geolocation Databases: Unreliable? SIGCOMM 
Comput. Commun. Rev. 41, 2: 53–56. 
https://doi.org/10.1145/1971162.1971171 

48. Giovanni Quattrone, Davide Proserpio, Daniele 
Quercia, Licia Capra, and Mirco Musolesi. 2016. Who 
Benefits from the “Sharing” Economy of Airbnb? 
arXiv:1602.02238 [physics]. Retrieved February 25, 
2016 from http://arxiv.org/abs/1602.02238 

49. Derek Ruths and Jürgen Pfeffer. 2014. Social media 
for large studies of behavior. Science 346, 6213: 1063–
1064. https://doi.org/10.1126/science.346.6213.1063 



50. Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. 
2010. Earthquake Shakes Twitter Users: Real-time 
Event Detection by Social Sensors. In Proceedings of 
the 19th International Conference on World Wide Web 
(WWW ’10), 851–860. 
https://doi.org/10.1145/1772690.1772777 

51. Salvatore Scellato, Anastasios Noulas, Renaud 
Lambiotte, and Cecilia Mascolo. 2011. Socio-Spatial 
Properties of Online Location-Based Social Networks. 
In Fifth International AAAI Conference on Weblogs 
and Social Media. Retrieved June 15, 2016 from 
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11
/paper/view/2751 

52. Shilad W. Sen, Heather Ford, David R. Musicant, 
Mark Graham, Oliver S.B. Keyes, and Brent Hecht. 
2015. Barriers to the Localness of Volunteered 
Geographic Information. In Proceedings of the 33rd 
Annual ACM Conference on Human Factors in 
Computing Systems (CHI ’15), 197–206. 
https://doi.org/10.1145/2702123.2702170 

53. Chris Smith, Daniele Quercia, and Licia Capra. 2013. 
Finger on the Pulse: Identifying Deprivation Using 
Transit Flow Analysis. In Proceedings of the 2013 
Conference on Computer Supported Cooperative Work 
(CSCW ’13), 683–692. 
https://doi.org/10.1145/2441776.2441852 

54. John Q. Stewart. 1948. Demographic Gravitation: 
Evidence and Applications. Sociometry 11, 1/2: 31–58. 
https://doi.org/10.2307/2785468 

55. Jacob Thebault-Spieker, Aaron Halfaker, Brent Hecht, 
and Loren Terveen. 2018. 
enwiki.revisions_with_coords.201510-201610.csv. 
https://doi.org/10.6084/m9.figshare.5764626.v1 

56. Jacob Thebault-Spieker, Brent Hecht, and Loren 
Terveen. 2018. Geographic Biases Are “Born, Not 
Made”: Exploring Contributors’ Spatiotemporal 
Behavior in OpenStreetMap. In Proceedings of the 
2018 ACM Conference on Supporting Groupwork 
(GROUP ’18), 71–82. 
https://doi.org/10.1145/3148330.3148350 

57. Alessandro Venerandi, Giovanni Quattrone, Licia 
Capra, Daniele Quercia, and Diego Saez-Trumper. 
2015. Measuring Urban Deprivation from User 
Generated Content. 254–264. 
https://doi.org/10.1145/2675133.2675233 

58. Wikipedia. 2015. Wikipedia:Introduction. Wikipedia. 
Retrieved October 22, 2016 from 
https://en.wikipedia.org/w/index.php?title=Wikipedia:I
ntroduction&oldid=680454568 

59. Spencer A. Wood, Anne D. Guerry, Jessica M. Silver, 
and Martin Lacayo. 2013. Using social media to 
quantify nature-based tourism and recreation. Scientific 
Reports 3. https://doi.org/10.1038/srep02976 

60. Dennis Zielstra, Hartwig H. Hochmair, Pascal Neis, 
and Francesco Tonini. 2014. Areal Delineation of 
Home Regions from Contribution and Editing Patterns 
in OpenStreetMap. ISPRS International Journal of 
Geo-Information 3, 4: 1211–1233. 
https://doi.org/10.3390/ijgi3041211 

61. About eBird | eBird. Retrieved September 19, 2017 
from http://ebird.org/content/ebird/about/ 

 


