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ABSTRACT 
Exploratory search, in which a user investigates complex 
concepts, is cumbersome with today’s search engines. We present 
a new exploratory search approach that generates interactive 
visualizations of query concepts using thematic cartography (e.g. 
choropleth maps, heat maps). We show how the approach can be 
applied broadly across both geographic and non-geographic 
contexts through explicit spatialization, a novel method that 
leverages any figure or diagram – from a periodic table, to a 
parliamentary seating chart, to a world map – as a spatial search 
environment. We enable this capability by introducing  
explanatory semantic relatedness measures. These measures 
extend frequently-used semantic relatedness measures to not only 
estimate the degree of relatedness between two concepts, but also 
generate human-readable explanations for their estimates by 
mining Wikipedia’s text, hyperlinks, and category structure. We 
implement our approach in a system called Atlasify, evaluate its 
key components, and present several use cases.  

Categories and Subject Descriptors 
H.3.m [Information Storage and Retrieval]: Miscellaneous, 
H.5.m. [Information interfaces and presentation (e.g., HCI)]: 
Miscellaneous 

General Terms 
Algorithms, Measurement, Experimentation, Human Factors 

Keywords 
Semantic relatedness, exploratory search, spatialization, 
cartography, geography, Wikipedia, text mining, GIScience 

1. INTRODUCTION 
Exploratory search is an open-ended information seeking activity 
in which a user aims to better understand a complex concept [39, 
40]. While exploratory search has historically accounted for 
roughly a quarter of Web search query volume [33], it remains 
challenging using today’s search engines due to their focus on 
closed information requests and navigational queries [40].  

In this paper, we leverage thematic cartography’s well-known 
ability to communicate complex geographic distributions [2, 5, 6, 
37] to help users understand the complex concepts encountered in 

exploratory search. While the benefits of cartography are usually 
limited to geographic inquiries, our approach is made domain-
neutral by harnessing general relational knowledge mined from 
Wikipedia. This means that users can employ thematic 
cartography to explore concepts not only from a geographic 
perspective, but also from a chemistry perspective, a politics 
perspective, a music perspective, or a perspective from any other 
topic area (even user-defined topic areas). 
We have implemented our exploratory search approach in a Web-
based system called Atlasify. Given a query concept, Atlasify 
automatically generates an interactive thematic cartography layer 
(e.g. a choropleth or heat map) on top of a spatial reference system 
from any domain, such as a periodic table, a U.S. senate seating 
chart, or a world map. The layer illustrates the degree to which the 
query concept is related to each spatial entity in the reference 
system (e.g. chemical elements, senators, countries). By clicking 
on a spatial entity, users see natural language explanations of 
exactly how that entity or region is related to the query concept. 
Users can enter any query that corresponds to a Wikipedia article 
(i.e. a page title, anchor text, or redirect). 

To make this process more concrete, consider the Atlasify use 
case in Figures 1–4. In Figure 1, a user who wants to learn about 
nuclear power has queried Atlasify for “Nuclear Power” and 
selected “Periodic Table” as the desired spatial reference system. 
As is typical with choropleth maps, the dark green areas in Figure 
1 are very related to nuclear power, and the lighter green areas are 
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Figure 1. Atlasify’s visualization of the query concept “Nuclear Power” 
on the “Periodic Table” spatial reference system. If users click on 
plutonium, they receive a list of explanations of how nuclear power and 
plutonium are related, a list that includes the above explanation.  



   
 
  

 
 

 
 

less related. Exploring further, the user may wish to understand 
why, for example, plutonium is so strongly related to nuclear 
power. By clicking on plutonium in the visualization, the user is 
presented with natural language explanations of the relationships 
between nuclear power and plutonium. Seeking a geographic 
perspective on nuclear power, the user then changes to the “World 
Map” reference system (Figure 2). The user does the same for a 
temporal perspective in Figure 3 (the “Timeline” reference 
system) and a United States politics perspective in Figure 4 (the 
“U.S. Senate Seating Chart” reference system). Note that Atlasify 
correctly highlights Fukushima, Russia, and the United States in 
the world map, the various important eras in the history of nuclear 
power on the timeline, and so on. While this use case focuses on 
the query concept “Nuclear Power”, Atlasify allows users to query 
for over 15 million articles from 25 different Wikipedia language 
editions. These Wikipedia-based concepts can currently be 
visualized on 13 different reference systems and adding new 
reference systems is straightforward. 
The effectiveness of thematic cartography is well established in 
geographic domains (e.g. [2, 5, 6, 37]). The goal of our 

exploratory search approach is to extend the strengths of thematic 
cartography to the wide variety of domains and query concepts 
encountered in exploratory search. This goal can be broken down 
into three key challenges, the solutions to which are additional 
contributions of this paper and have implications outside of 
exploratory search. 

The first challenge involves generalizing the visualization strategy 
used in Figure 2 to non-geographic reference systems (e.g. 
periodic tables, anatomical charts, timelines, and many other 
figures and diagrams). Our solution is explicit spatialization (ES), 
which enables cartographic and geographic information retrieval 
(GIR) methods to be applied in any figure or diagram. As 
discussed in Section 3, ES accomplishes this by “spatializing” 
concepts into pre-defined reference systems and generalizing the 
canonical model of geographic information to incorporate 
domain-neutral spatial information. In doing so, ES can extend the 
ongoing advances in online mapping and GIR to many domains 
outside of geography. 

The second challenge involves automatically estimating the 
degree of relatedness between any of the millions of possible 
query concepts (e.g. “Nuclear Power”) and every spatial entity in 
each reference system (e.g. chemical elements, countries). These 
estimates determine the value of the visual variables manipulated 
in thematic cartography, such as color and text size (e.g. the 
shades of green and font sizes in Figures 1–4). We show how 
Wikipedia-based semantic relatedness (SR) measures, which 
provide a numerical relatedness score for any pair of lexically 
expressed concepts, can solve this problem. We introduce a new 
SR measure, AtlasifySR+E, which uses a learned model to 
combine six separate SR measures, each capturing a different type 
of relationship. Experiments on several SR benchmarks show that 
AtlasifySR+E achieves state-of-the-art performance while also 
remaining language-neutral and using only open, easily accessible 
data, overcoming two limitations of the current state-of-the-art SR 
measure. 
The final challenge concerns generating natural language 
explanations of the relationships between the query concept and 
any spatial entity. These explanations realize the key paradigm of 
modern interactive cartography that users be able to click on a 
part of a map to obtain additional details [34, 35]. To address this 
challenge, we introduce the notion of explanatory semantic 
relatedness measures (SR+E), which not only return a numeric 
estimate of the semantic relatedness between two entities, but also 

!
Figure 2. Atlasify visualizing the query concept “Nuclear Power” on the “World Map” reference system. The user is able to see that, for instance, sub-
Saharan Africa is not very related to nuclear power, while the United States, Chernobyl, and Fukushima are quite related. The “World Map” reference 
system is the largest of Atlasify’s spatial reference systems, with approx. 380,000 entities. For each query concept, the AtlasifySR+E semantic relatedness 
between all entities and the query concept must be calculated. 

!
Figure 3. “Nuclear Power” visualized on the “Timeline” reference system.!

!
Figure 4. “Nuclear Power” visualized on the “U.S. Senate Seating Chart” 
reference system.  



   
 
  

 
 

 
 

explain the identified relationships to end users. We show how 
Wikipedia-based SR measures can be made explanatory by using 
machine learning to mine informative snippets of Wikipedia text. 
Furthermore, we describe how our SR+E measure, AtlasifySR+E, 
uses machine learning to combine the explanations of its six 
constituent measures. Again, the approach of integrating the 
perspectives of each SR measure results in improved 
performance: our experiments demonstrate that AtlasifySR+E’s 
explanations outperform those of any single measure and other 
baselines. 

In summary, this paper presents both a method for leveraging 
thematic cartography for domain-neutral exploratory search and 
the innovations in SR and information spatialization required to 
make that possible, namely (1) explicit spatialization, (2) 
improved SR estimation, and (3) explanatory SR measures. The 
remainder of this paper is organized as follows. After covering 
related work, we formally define explicit spatialization and 
discuss how it is implemented in the Atlasify system. Next, we 
introduce explanatory SR measures and describe methods for 
generating explanations for six separate SR measures. We then 
present our experiments, in which our approach and its 
components are evaluated up to the point where thematic 
cartography’s well-understood methods take over. Finally, we 
conclude and discuss directions for future work. 

2. RELATED WORK 
In this section, we cover research related to this paper at a high 
level, with additional related work specific to each section of the 
paper discussed in context. Our research falls into the area of 
exploratory search. White et al. write that exploratory search 
systems aid users with information seeking problems that are 
“open-ended, persistent and multi-faceted” [40]. This stands in 
contrast to traditional Web search, which is primarily concerned 
with navigational queries and closed information requests. Despite 
the prevalence of exploratory queries, exploratory search is a 
relatively new research area with many open questions [40]. 

The field of cartography has identified several reasons why 
humans find thematic mapping useful for understanding complex 
geographic patterns. The known benefits of thematic maps are the 
communication of specific information [20, 37], the 
communication of regional/general information [20, 37], 
straightforward comparisons between maps showing different 
distributions [37], and straightforward comparisons between a 
mapped distribution and one’s mental model of depicted entities 
and regions [24, 37]. We enable these benefits in a wide variety of 
domains outside geography. For instance, in Figure 1 it is easy to 
see that plutonium specifically is quite related to nuclear power, 
but so is the entire “region” of actinides (the bottom row). An 
Atlasify user may recall from chemistry class that actinides have 
to do with the atomic age, so the fact that this region is 
highlighted reinforces her mental model. Finally, comparing 
Figure 1 with a periodic table visualization of, say, coal power, it 
is easy to identify differences in the chemistry of the two 
concepts. 

Our work within geographic reference systems is related to 
research in language models associated with geographic places 
For example, Google Correlate [12] provides an interface to 
models based on georeferenced query logs. Others have leveraged 
geographic language models to study the geographic distribution 
of zeitgeist terms [16], to explore the use of relatedness-like 
metrics in a geographic context [15, 28], and for various other 
applications (e.g. [7,19,27]). Some of this research has been 

echoed in the temporal domain (e.g. [28, 30]). We extend this 
work by generalizing the notion of geographic language models to 
arbitrary spatial reference systems, rather than just geographic and 
temporal ones. This research is also the first to our knowledge to 
(1) use geographic language models for exploratory search, (2) 
apply robust SR measures to geographic language models, and (3) 
use explanatory SR measures in this context (or any other). 

3. EXPLICIT SPATIALIZATION 
Explicit spatialization (ES) is a novel form of information 
spatialization that, diverging from the existing spatialization 
literature, uses pre-defined reference systems (e.g. maps, figures, 
and diagrams) instead of data-driven reference systems. While ES 
is essential to our exploratory search approach, it also has 
implications beyond this work. Namely, it provides a new means 
by which advances in online mapping and geographic information 
retrieval (GIR) can be extended to domains outside of geography. 

3.1 Definition of Explicit Spatialization 
Explicit spatialization (ES) “spatializes” or “projects” any object o 
into a pre-defined reference system such as a periodic table, map, 
or seating chart. More formally, ES defines a process that 
represents an object o in terms of the spatial entities E in a 
reference system rs according to the output of an ES function 
fES (o, E). We clarify the key elements of this process below. 

Let us consider Atlasify’s implementation of explicit 
spatialization. In Atlasify, each object o is a query concept (e.g. 
“Nuclear Power”) and the system’s ES function is our SR+E 
measure AtlasifySR+E. The spatial entities considered include 
countries (and cities, landmarks, etc.) in the “World Map” 
reference system, chemical elements in the “Periodic Table” 
reference system, and so on. Atlasify therefore spatializes each 
query concept into each reference system by running 
AtlasifySR+E on each query concept/spatial entity pair. 
In explicit spatialization, each spatial entity e ∈ E in a reference 
system rs is comprised of a tuple <x,d>, where x is a location 
(spatial footprint) in rs, and d is one or more data resources 
describing the entity. These data resources are mined by the ES 
function to spatialize the object o. In Atlasify, d consists of a 
single Wikipedia article describing each spatial entity. 

The output of an ES function is a spatial distribution (“layer”) 
whose data model is a generalization of the canonical model of 
geographic information [11] (see Figure 5). The canonical 
geographic model formalizes an atomic unit of geographic 
information as a tuple <x, z>, where x is a location in space-time 
of an entity on or near the surface of the Earth (e.g. its latitude / 
longitude coordinate or its polygonal representation) and z is a set 
of attributes corresponding to that entity (e.g. temperatures, 

! !!! 
Figure 5. An example of the canonical data model of geographic 
information (a, top) and the explicit spatialization data model (b, bottom).  
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population counts). ES generalizes the geographic information 
model by replacing “the Earth” with an arbitrary reference system 
rs (such as the periodic table, an anatomical chart, etc.). The new 
model is equivalent to the geographic information model for a 
single fixed rs (except, of course, for the domain of the entities). It 
is via this reduction that ES can use traditional cartographic and 
GIR methods with little to no modification. 

The flexibility of the ES data model makes it adaptable to nearly 
any reference system in any domain. As one example of ES’s 
generality, consider a Web browser reference system that, as a 
user browses the web, shows heat maps visualizing relatedness to 
a persistent concept of interest. We have implemented a static 
proof-of-concept of this idea in Atlasify’s “New York Times 
Homepage” reference system (Figure 6). 

It is important to note that Atlasify’s implementation of explicit 
spatialization is far from the only possible approach. Other ES 
functions could include topic detection techniques or an algorithm 
that calculates entity-level sentiment. Similarly, a projected object 
o could be a blog post, an academic paper, or even an entire 
document collection, and data resources d considered for each 
spatial entity could include tweets, images, or photo tags. 

3.2 Relationship to Traditional Spatialization 
Traditional spatialization produces data-driven, abstract reference 
systems generally by applying dimension reduction to document 
collections for the purpose of visualizing those collections (see 
[13, 36] for an overview). ES, on the other hand, leverages 
existing reference systems (e.g. the periodic table, the human 
body, the surface of the Earth) for general IR applications. As a 
result, ES avoids the pitfalls that can make traditional 
spatialization undesirable for search [13], such as the error 
introduced by dimension reduction [13, 17, 36] and the imposition 
of a single, static visualization for an entire document collection 
[13]. While a few commercial document visualization systems 
(e.g. [32]) have begun to explore extensible reference systems as 
in ES, they still rely on traditional spatialization as their primary 
paradigm. 

3.3 Spatiotagging 
Preparing a new reference system for an ES application like 
Atlasify is a straightforward process that we call spatiotagging. 
Spatiotagging is a generalization of geotagging to arbitrary spatial 
reference systems. To construct a reference system using 
spatiotagging, one simply identifies the spatial footprint (x) of the 
spatial entities in the reference system (e.g. chemical elements, 
Senate chamber seats, countries), and matches those entities to 
data resources (d) (e.g. corresponding Wikipedia articles). Spatial 
footprints can be identified by manually tracing the shapes of 
entities over a figure, diagram or image, obtaining pre-existing 
spatial representations (e.g. KML files or shapefiles), leveraging 
computer vision (e.g. OCR), or utilizing other techniques. 

3.4 User-defined Reference Systems 
While spatiotagging a new reference system is straightforward, it 
requires some effort. Further, users may not be able to find an 
existing reference system appropriate for their needs. In this 
section, we show how it is possible to extend ES to support ad-
hoc, user-defined reference systems via the semantic relatedness 

work explained in detail later in the paper (Sections 4–5).   
Explicit spatialization enables the automatic construction of user-
defined reference systems through three components: (1) 
predefined templates, which describe the general layout of the 
reference systems, (2) a category of concepts to act as spatial 
entities, and (3) SR algorithms. Figures 7 and 8 provide a small 
use case of user-defined reference systems generated in Atlasify 
using the “spectrum” and “simplex” predefined templates 
respectively. In both figures, the spatial entity concepts are 
members of the Wikipedia category “Grammy Award winners,” 
and the SR algorithm is AtlasifySR+E. 
Predefined templates and their “anchor concepts” make user-
defined reference systems explicit. The “spectrum” template 
supports two anchor concepts and the “simplex” supports three. In 
Atlasify’s implementation, users can set these anchor concepts to 
any concept covered by a Wikipedia article (e.g. “Rock music”, 
“Hip hop music”). Note that a reference system defined by a given 
set of anchor concepts remains fixed, independent of which 
category of concepts (spatial entities) or query concept is plotted 
on it (i.e. it is not data-driven). As noted above, this is the key 
distinction between explicit and traditional spatialization. 

In user-defined reference systems, the exact position of each 
spatial entity is defined by the SR between the corresponding 
concept and each of the anchor concepts. In other words, 
spatiotagging is done automatically in these reference systems 
using SR. If a spatial entity is very close to an anchor, this 
indicates that the corresponding concept is significantly more 
related to the nearby anchor than to the others. Only concepts that 
are non-trivially related to all anchors are included as spatial 
entities. In Atlasify’s implementation, the category of concepts to 
act as spatial entities can be any Wikipedia category (Section 4). 

As shown in Figure 8, user-defined reference systems are intended 
to be used as the basis for thematic cartography visualizations of 
query concepts just like standard ES reference systems. However, 
user-defined reference systems may also have value as 
exploratory search tools in and of themselves, without the 
thematic layer (e.g. Figure 7), but this more closely resembles 
traditional spatialization. 

Figure 6. Atlasify’s explicit spatialization of the query concept “Arab 
People” on the “New York Times Homepage” reference system. Atlasify 
correctly understands that the left column consists of Arab people-related 
stories. It also detects small increases in relatedness near “crude oil”, etc.!

!
Figure 7: A spectrum user-defined reference system of Grammy Award winners plotted from “Rock music” to “Hip hop music”. When used for thematic 
cartography visualizations, relatedness to the query concept is displayed in a similar fashion to Figure 3.!!



   
 
  

 
 

 
 

3.5 Spatial Information Retrieval 
Our exploratory search approach focuses on the cartographic 
benefits of explicit spatialization, but ES also has GIR 
implications. Namely, ES generalizes GIR to spatial information 
retrieval2 (SIR). In SIR, many GIR research areas – from 
understanding vague regions to toponym (place name) resolution 
to geographic relevance ranking to local search – can become 
relevant in non-geographic domains. For instance, Jones et al.’s 
work on modeling vague geographic regions [19] like the English 
Midlands could be applied to numerous other reference systems, 
e.g. to model the “belly” or “tummy” vague regions in an 
anatomical reference system. 

To demonstrate the possibilities of SIR, we have implemented in 
Atlasify one of the most basic GIR features: the simple bounding 
box spatial query. Users can issue these spatial queries by clicking 
Atlasify’s “What’s Related Here” button. Users are then presented 
with a list of concepts ranked by relatedness to the spatial region 
defined by the current view frame, which can then be filtered by 
Wikipedia category. This allows users to, for example, find out 
the concepts most related to the actinide elements or to the 
longest-serving members of the Democratic caucus (in the middle 
left of the seating chart).  

4. EXPLANATORY SEMANTIC 
RELATEDNESS MEASURES 
In this section, we introduce explanatory semantic relatedness 
measures (SR+E). Like traditional semantic relatedness (SR) 
measures, SR+E measures return a value that summarizes the 
number and strength of relationships between a given pair of 
concepts (e.g. <Nuclear Power, Plutonium>)[14]. However, along 
with each value, SR+E measures also provide a ranked list of 
natural language explanations of the various relationships 
underlying the value, in descending order of informativeness.  

As noted above, SR+E measures play an integral role in our 
exploratory search approach. Each spatial distribution that our 
                                                                    
2 The term “Spatial Information Retrieval” has been used as a synonym of 
GIR in the literature, but not, to our knowledge, to refer to the 
generalization of GIR as it is used here. 

approach visualizes with thematic cartography is made up of SR 
estimates between the query concept and all entities in a reference 
system. While these visualizations show users the degree to which 
a query concept is related to a given spatial entity, the natural 
language explanations produced by SR+E measures describe why 
they are related. In doing so, the explanations provide users with 
“details-on-demand” [35] for a clicked spatial entity, following 
the principles of interactive cartography [34]. 

We begin our detailed discussion of SR+E measures below by 
introducing methods for generating explanations for three popular 
existing SR measures – WikiRelate [38], MilneWitten [22], and 
Explicit Semantic Analysis [9] – and then do the same for several 
new measures. We describe how each resulting SR+E measure 
mines Wikipedia’s text, links, or category structure to create 
explanations that reflect the relationships captured by the 
corresponding SR measure. We next cover AtlasifySR+E, the 
SR+E measure used in our exploratory search approach and 
implemented in the Atlasify system. AtlasifySR+E combines the 
benefits of the individual SR+E measures discussed above using a 
learned model. We hypothesized this ensemble approach could 
produce better SR estimates and explanations than any single 
measure alone. While we discuss the design of AtlasifySR+E here, 
our evidence that supports this hypothesis and descriptions of the 
related machine learning experiments are in Section 5. 

Finally, we note that while our focus in this paper is on utilizing 
SR+E for exploratory search, we expect the explanation 
mechanisms and improved SR measures will have broader 
applicability as well. SR estimates are frequently utilized in NLP, 
AI, and IR [4, 9, 43], and have been applied in tasks such as 
information extraction [4], clustering [1, 30] and search [30].   

4.1 Adding Explanations to SR Measures 
4.1.1 Selecting SR Measures 
There are many SR measures in the literature. Even limiting our 
attention to Wikipedia-specific SR measures, which have been 
shown to be better [30] or as good as WordNet-based measures 
[43], there are still quite a few to consider (e.g. [9, 22, 30, 38]). 
We focus on three such measures – WikiRelate, MilneWitten, and 
Explicit Semantic Analysis – because they are among the best-
known SR measures and because each uses a different Wikipedia 
lexical semantic resource [44], thereby capturing different types 
of relationships between concepts. We also introduce new SR 
measures to take advantage of additional types of relationships 
that are not identified by published SR measures. 

4.1.2 General Approach to Adding Explanations 
Before discussing the details of how we added explanatory 
capabilities to each of the individual SR measures, we first cover 
the elements that apply across all measures.  

As noted above, each SR+E measure must return a list of natural 
language relationship explanations ranked by informativeness. 
While there are other possible approaches, here we define the 
informativeness of each explanation to be based on two factors: 
the strength of the described relationship and the quality of the 
textual description. As such, each explanation must consist of 
natural language text, a relationship strength value, and a text 
quality value.  

In all of our SR+E implementations, the text of relationship 
explanations is mined from Wikipedia. Several of the SR 
measures we considered implicitly calculate relationship strength 
when computing SR values. Where this is not true, we have 
developed strength metrics that are consistent with the SR 
measure’s overall algorithm. As is described in Section 5, we 

!
Figure 8. The query concept “Grand Ole Opry” is visualized on a simplex 
reference system defined by music genres, with the spatial entities being 
members of the Wikipedia category “Grammy Award Winners”. It is clear 
that “Grand Ole Opry” is more related to country music than, say, rock 
music.  



   
 
  

 
 

 
 

utilize machine learning techniques to map features of the textual 
explanations to an estimate of text quality, and combine this with 
relationship strength using heuristics to arrive at a final ranking. 
The heuristics differ for each SR+E measure, but they generally 
weigh relationship strength more heavily than text quality. 

4.1.3 WikiRelate 
WikiRelate [38] uses the Wikipedia Category Graph (WCG) 
structure as its lexical resource. In Wikipedia, each article can 
have 0 or more categories (they appear at the bottom of the 
article), and each of these categories can have 0 or more parents. 
The resulting graph is the WCG, which is a folksonomy [38]. 

WikiRelate leverages a variant of the WCG path length between 
the articles a and b to estimate SR(a,b). The insight behind this 
design is that each path represents a relationship between a and b, 
and the shorter the path, the stronger the relationship. We 
construct WikiRelate explanations to elucidate these relationship 
paths to the user in natural language. For example, Figure 9 
displays a WikiRelate explanation for the strongest relationship 
between Chemistry and Mathematics (the shortest WCG path 
between the two articles). In the case of WikiRelate, text quality is 
not considered in the informativeness function as the natural 
language is automatically determined in the same way for all 
explanations. 
Chemistry and Mathematics both belong to Category:Academic 
Disciplines 

Chemistry 

Chemistry is a member of Category:Natural sciences, which is a member of 
Category:Academic disciplines 

Mathematics 

Mathematics is a member of Category:Formal sciences, which is a member 
of Category:Academic disciplines!
Figure 9. The top WikiRelate explanation for the concept pair 
<Chemistry, Mathematics>. The format of this explanation and those in 
Figures 10 and 11 mimic that of the Atlasify interface. 

4.1.4 MilneWitten, OutlinkOverlap, and WAGDirect  
The Wikipedia Article Graph (WAG) consists of Wikipedia 
articles and the links between them. There are several published 
WAG-based SR measures (e.g. [15, 22]). We implemented the 
measure by Milne and Witten [22], MilneWitten, as it has been 
used in popular web mining applications (e.g. [23]). 
MilneWitten operates by comparing the set of articles that link to 
the articles a and b. The intuition is that if a and b share many 
inlinks, they should be assigned a high SR score.3 The 
relationships considered here are indirect: a shared inlink means 
that an article c links to both a and b. Explanations based on 
MilneWitten must therefore elucidate the nature of these a←c→b 
relationships. Figure 10a displays the most informative 
MilneWitten explanation for the concept pair <United States, 
Chocolate> (c = “Chocolate chip”). 

However, in order to establish that the explanation in Figure 10a 
was the top explanation – recall that explanations are ranked by 
informativeness, which is a function of strength and text quality – 
our MilneWitten+E implementation needed a way to measure the 
strength of each a←c→b relationship. In other words, we required 
some method of determining that “Chocolate chip” represents a 
                                                                    
3 Our implementation of MilneWitten is slightly simplified from Milne 
and Witten’s final measure; we only consider their “Google Distance-
inspired” metric. They were able to gain modest but insignificant 
improvements by averaging in their “TFIDF-inspired” metric. 

stronger a←c→b relationship than, say, the article “List of Viva 
Piñata Episodes”, which also links to both “Chocolate” and 
“United States”. To solve this problem, we use bootstrapping to 
calculate SRMilneWitten(a,c) and SRMilneWitten(b,c). The strength of 
each a←c→b relationship is then computed by taking 
SRMilneWitten(a,c) * SRMilneWitten(b,c). This algorithm results in the 
relationship involving “Chocolate chip” being deemed the 
strongest relationship, with that involving “List of Viva Piñata 
Episodes” much further down the list. 
Chocolate chip links to United States and Chocolate 

CHOCOLATE CHIP: 

Chocolate chips are small chunks of chocolate. 

CHOCOLATE CHIP: AVAILABILITY 

Today, chocolate chips are very popular as a baking ingredient in the United 
States and the chocolate chip cookie is regarded as a quintessential 
American dessert. 

Cheese links to France 

CHEESE: WORLD PRODUCTION AND CONSUMPTION: 

The biggest exporter of cheese, by monetary value, is France; the second, 
Germany (although it is first by quantity)!
Life and Death link to Organism 

LIFE: 

In biology, the science of living organisms, life is the condition that 
distinguishes active organisms from inorganic matter. Living organisms 
undergo metabolism, maintain homeostasis, possess a capacity to grow, 
respond to stimuli, reproduce and, through natural selection, adapt to their 
environment in successive generations. 

DEATH: 

Death is the termination of the biological functions that sustain a living 
organism. 

Figure 10: (a, top) The top MilneWitten explanation for <United States, 
Chocolate>, (b, middle) the top WAGDirect explanation for <Cheese, 
France>, (c, bottom) the top OutlinkOverlap explanation for <Life, 
Death>.  
We have also implemented a modified version of MilneWitten, 
WeightedMW, that more heavily weights the links that occur at the 
very beginning of overlapping articles (i.e. in the gloss of the 
article). The experiments in Section 5 show that this weighted 
measure estimates SR values somewhat better than our 
implementation of MilneWitten. Explanations are generated in the 
same fashion as in standard MilneWitten. 

MilneWitten and WeightedMW ignore two important types of 
relationships present in the WAG. First and foremost, if a links 
directly to b (a→b) or vice versa (b→a), this link obviously 
represents a significant relationship between a and b. We 
implemented a new SR measure called WAGDirect to capture 
these relationships. WAGDirect considers only direct links 
between a and b, weighted by whether the link occurs in the gloss 
of the article and whether the link is bidirectional. Explanations of 
WAGDirect relationships thus consist of text snippets from article 
a that discuss b, and/or vice versa (Figure 10b), without any 
intermediary article c. 

It was also important that we consider the inverse of MilneWitten: 
the overlap of the set of outlinks of a and b. This is done by our 
OutlinkOverlap measure, which is similar to other algorithms 
explored by Milne and Witten [21]. OutlinkOverlap uses the 
principle that, broadly speaking, if a and b share a significant 
number of outlinks, then a and b are quite related. OutlinkOverlap 
explanations thus describe how a and b discuss these mutually 
outlinked articles. In other words, they include text snippets from 
a and b that explicate the a→c←b relationships considered by this 
SR measure (see Figure 10c). OutlinkOverlap relationship 



   
 
  

 
 

 
 

strengths are calculated in a similar manner as MilneWitten 
strengths. 

4.1.5 Explicit Semantic Analysis 
Explicit Semantic Analysis (ESA) [9,10] is a popular SR algorithm 
that uses Wikipedia text as its lexical resource. ESA models input 
concepts a and b “in terms of Wikipedia-based concepts” [9]. The 
measure is “explicit” because Wikipedia articles, which are 
understandable to humans, define this modeling space. ESA’s use 
of real concepts stands in stark contrast to the abstract concepts of 
methods like Latent Semantic Analysis (LSA), just as the real 
spaces of explicit spatialization differ from the abstract spaces of 
traditional spatialization (Explicit Semantic Analysis motivated the 
name of explicit spatialization). 
Broadly speaking, to produce SR estimates, ESA considers the co-
occurrence of a and b in a large number of Wikipedia articles C. 
Specifically, ESA represents a and b as vectors of bag-of-words 
similarity to each article c in C. It then compares these vectors 
using cosine similarity. The relationships considered by ESA are 
thus co-occurring mentions of a and b in each Wikipedia article in 
the concept space. Stronger relationships are defined by articles in 
C that more frequently mention both a and b (with consideration 
for document frequency as well), and strength can be estimated by 
comparing the combined values in each vector dimension while 
calculating the cosine similarity. Explanations derived from ESA 
thus describe the co-occurrence of mentions of a and b in each 
article c in C in a human-readable fashion (Figure 11).  
Beer in Ireland discusses both Ireland and Beer 

Though Ireland is better known for stout, 63% of the beer sold in the country 
is lager.!
Figure 11: The top ESA explanation for <Ireland, Beer>. In this case c = 
“Beer in Ireland”.  

4.2 AtlasifySR+E 
The SR+E measures discussed above capture distinct relationship 
types. WikiRelate tends to operate on classical relations [4] such 
as isA (hyponymy/hypernymy) and hasA (meronymy/holonymy) 
[38]. The WAG-based SR measures are more capable of 
discovering non-classical relations [4], such as 
isTheBiggestExporterOf (Figure 10b). Finally, ESA discovers the 
“distributional” relationships [4] inherent to text co-occurrence. 
AtlasifySR+E, the algorithm employed in our exploratory search 
approach, combines all six previously discussed SR measures. 
The goal in doing so was to develop an SR+E measure that 
understands all three types of relationships. We hypothesized that 
such an ensemble measure would produce both (1) better SR 
estimates and (2) better relationship explanations. AtlasifySR+E’s 
SR estimate for a pair of terms is the output of a learned model 
whose features include the estimates of each constituent SR 
measure as well as features like the word sense entropy of the 
pair. AtlasifySR+E generates explanations for these estimates 
using a different learned model to select the best explanation 
among those output by each constituent measure. AtlasifySR+E 
then iterates, choosing the next best explanation, resulting in a 
long ranked list of explanations.  

The experiments section that follows (Section 5) describes in 
detail each of the learned models and their associated machine 
learning experiments. We also show in Section 5 that both of our 
hypotheses related to the combining of SR measures for improved 
performance were supported. 

5. EVALUATION EXPERIMENTS 
Evaluation of exploratory search systems is a notoriously difficult 
problem [39, 40]. In this paper, our evaluation strategy is to 
investigate the performance of the individual components of our 
exploratory search approach. Specifically, we focus the evaluation 
on our method of projecting query concepts into spatial 
distributions using SR+E’s relatedness estimates and 
explanations. This has the added value of confirming these 
components as independent contributions. Once these spatial 
distributions have been created, thematic cartography’s well-
evaluated techniques (see [37] for an overview) can be employed.  
Below, we first describe experiments that demonstrate the state-
of-the-art accuracy of our SR estimates. Next, we discuss how we 
collected over 2,500 human judgments of explanation quality and 
used these judgments to train a ranker whose performance 
significantly exceeds baseline approaches. 

5.1 SR Value Experiments 
Accurate SR value estimates are integral to our exploratory search 
approach. The colors, text sizes, and other visual variables in 
Figures 1–4 and 7–8 are defined by AtlasifySR+E’s estimates of 
the SR between each spatial entity and the query concept. Our 
method for achieving high-quality SR is to combine the estimates 
of the six SR measures mentioned above using machine learning, 
and use the resultant trained model to generate AtlasifySR+E’s 
estimates. In this section, we describe this machine learning 
approach and evaluate the accuracy of AtlasifySR+E’s SR 
estimates against benchmark SR data sets.  

We first ran an experiment to validate the performance of our 
implementations of SR measures from previous work. Following 
standard practice, we evaluated each implementation by 
comparing its SR estimates with datasets of human gold standard 
estimates using Spearman’s rs and Pearson’s r (Table 1). These 
datasets consist of term pairs and associated SR values, which are 
averaged across all human annotators of a dataset. We used two 
long-standing SR datasets, WordSim353 [8] and MC30 [21], as 
well as TSA287 [30] and Atlasify2404, the SR dataset we 
developed as part of the experiment described in Section 5.2. The 
results in Table 1 indicate that our implementations are 
satisfactory, especially given Wikipedia-based SR measures’ 
tendency to fluctuate in accuracy over time [26, 42]. 

Our approach to combining the estimates of each constituent SR 
measure was to use a regression model to predict the human gold 
standard judgments in WordSim353, the most common SR dataset 
in the literature. We then used this trained model5 to predict the 
gold standard judgments in the four SR datasets discussed above. 
The regression model employed a variety of features, including 
the SR estimates produced by each constituent measure, along 
with numerous properties of the Wikipedia article corresponding 
to each term in a term pair (e.g. article length, link density). Our 
model also included as a feature the entropy of the word sense 
disambiguation task required to identify matching articles for each 
term. AtlasifySR+E uses a pairwise maximization approach for 

                                                                    
4Atlasify240 is available for download at http://www.cs.northwestern.edu/ 
~ddowney/data_code.html 
5 Although MC30 and WordSim353 are frequently simultaneously used to 
evaluate SR measures, MC30 is a subset of WordSim353. As such, prior to 
training the model on which we tested on MC30, we removed the 30 
overlapping pairs from our training set (leaving 323 pairs available for 
training). We did the same for the 1 overlapping pair with TSA287. 



   
 
  

 
 

 
 

word sense disambiguation [22, 26], wherein word sense 
candidates are identified using anchor texts.  

We found that a boosted implementation of Quinlan’s M5 
algorithm for smoothed trees of linear regression models achieved 
good performance using 10-fold cross validation (mean r = 0.75 
with gold standard values). Among the most predictive features in 
the model were the SR scores generated by the constituent 
algorithms and the word sense entropy of the term pair. The 
constituent SR measure with the most predictive power was ESA. 

We then evaluated the performance of our new AtlasifySR+E 
measure using the same experimental setup as above. The full 
results can be seen in Table 1. AtlasifySR+E performs better than 
all Wikipedia-specific measures on every dataset but MC30 for 
both correlation metrics, and the MC30 differences are not 
significant. Further, we could not detect a statistically significant 
difference between AtlasifySR+E’s Pearson’s correlations and the 
inter-annotator agreement in every case.  

We also could not detect a significant difference between the 
accuracy of SR estimates generated by AtlasifySR+E and those 
generated by TSA, which is the current state-of-the-art SR 
algorithm. AtlasifySR+E relies only on Wikipedia data while TSA 
additionally uses exogenous information in the form of a large set 
of New York Times abstracts stretching over decades. This data is 
language-specific, less accessible than Wikipedia, and less open.  
AtlasifySR+E may thus be preferable to TSA in, for example, for-
profit settings, non-English contexts, and cross-language 
information retrieval, a popular application of semantic 
relatedness (e.g. [29]). Atlasify supports exploratory inquiry in 25 
language editions of Wikipedia, and the multilingual nature of 
AtlasifySR+E is a major reason we were able to make Atlasify so 
universal. We also note that AtlasifySR+E’s ensemble approach – 
improving performance by combining different perspectives on 
the relatedness between concepts – can incorporate additional 
perspectives on relatedness, such as TSA’s temporal approach and 
future innovations. 

5.2 Explanation Ranking Experiments 
Each of AtlasifySR+E’s constituent SR+E measures returns a list 
of explanations ranked by their informativeness (Section 4.2). 
AtlasifySR+E must then consolidate and rank the explanations 

from each measure into a single list to return to the user when 
they click on a spatial entity. We approached this explanation 
ranking task as follows: given a concept pair and the up to six top-
ranked (most informative) explanations from the constituent 
measures, AtlasifySR+E is to select the best explanation. 
AtlasifySR+E then iterates, removing the explanation it judged to 
be most interesting at each iteration and placing it in order in the 
list of explanations to be returned to the user. In the case of the 
constituent SR measure whose explanation was placed in the 
returned list, the next most informative explanation is considered 
in the subsequent iteration. Solving this ranking problem involved 
gathering a dataset from human judges and then using this dataset 
to train, develop, and test a ranker. We describe this effort below. 

5.2.1 Data collection 
Our training data was based on 268 manually selected concept 
pairs. Each concept mapped unambiguously to a Wikipedia 
article, and, following one approach in the literature (e.g. [8, 25]), 
concept pairs were hypothesized to uniformly cover the spectrum 
of semantic relatedness. While 28 of these concept pairs come 
from WordSim353, 240 are original pairs not seen before in the 
SR literature. These 240 pairs make up the Atlasify240 dataset, 
which is focused on named entities. Named entities make up a 
large majority of concepts in spatial reference systems (e.g. “John 
McCain”, “Israel”, “Helium”). Existing datasets (e.g. [8, 21, 30]) 
include relatively few named entities, necessitating new concept 
pairs for our evaluation. 

Each of the most informative (top-ranked) explanations from 
AtlasifySR+E’s constituent SR+E measures was generated for all 
of the 268 pairs and placed in a Web interface (when there was an 
explanation available). The interface allowed human annotators to 
rank the explanations for each pair of articles using drag-and-drop 
techniques. The presentation order of both the pairs and the 
explanations were randomized. Prior to ranking explanations for a 
pair, annotators were required to provide an SR estimate. 
Following the existing SR literature [25, 30], annotators were able 
to rank SR on a limited scale, in our case from 0 (not related) to 4 
(very related). After ranking the available explanations, annotators 
were asked if they thought that their top-ranked explanation was a 
good explanation of a relationship between the two concepts. 

SR Algorithm MC30 WordSim353 TSA287 Atlasify240 
rs r rs r rs r rs r 

WikiRelate AtlasifySR+E .78 .82 .49 .48  .40 .47 .52 .53 
Published - .57 - .53 - - - - 

MilneWitten 
AtlasifySR+E .64 .65 .56  .52  .49 .45 .68 .69 
Published .70 - .69  -  - - - - 

WeightedMW .65 .65 .66 .57  .53 .46 .74 .72 
WAGDirect .71 .73 .64 .58  .49 .53 .60 .56 
OutlinkOverlap .64 .67 .52 .42  .48 .42 .61 .51 

ESA 
AtlasifySR+E .74 .77† .72 .70†  .58 .62† .71 .72† 
Published .72 - .75 -  - - - - 

TSA  
(current SoA) Published - - .80  -  .63 - - - 

AtlasifySR+E .75 .81 .78‡ .76‡ .64 .68 .78 .77 

Inter-annotator Agreement n/a .90 n/a .55-.73 n/a - n/a .77 

Table 1. The performance of the SR measures considered in this paper, in context with that of their published versions. Where inter-annotator agreement 
(InterAA) is available, bold indicates results with which we could not detect a significant difference with InterAA using the method in [10] and p < 0.05. 
Where it is not available, bold indicates the top result and those with which we could not detect a significant difference with the top result. InterAA is not 
included for Spearman’s r (rs) due to the prevalence of ties [43]. Note that AtlasifySR+E is the only measure that is bold in all columns, including those for 
which there is data for the current state-of-the-art, TSA. A ‡ indicates that the model was trained on this dataset. A † indicates that the log of the estimates 
has been used for improved performance. Finally, a dash means that data was not reported. 



   
 
  

 
 

 
 

Ten annotators finished all pairs. On average, annotators said 66% 
of their top-ranked explanations were good explanations of the 
relationship between the two concepts. As hypothesized, 
WAGDirect was by far the best algorithm, with 55% of its 
explanations being chosen as the best on average. However, 
WAGDirect was only able to produce an explanation in 26.8% of 
cases because only that many of the article pairs had at least one 
link between them. WikiRelate was lowest performing algorithm, 
but was still selected 13.8% of time when it was available. The 
MilneWitten algorithms were the most prolific and were each able 
to generate an explanation for over 80% of the samples. 

For 18 (6.7%) pairs, no algorithm was able to generate an 
explanation. This is to be expected for pairs with very low SR; 
where there is no relatedness, there is no relationship to explain. 
Indeed the average mean SR judgment for these pairs was 0.52 (in 
a 0-4 range). In contrast, the average mean SR judgment for pairs 
for which all six algorithms generated explanations was 3.78. 

5.2.2 Machine Learning 
Using the hand-annotated ranks from our data collection process, 
we developed a dataset that consisted of numerous features for 
each explanation, including: (1) the SR value estimate from the 
constituent SR+E measure, (2) the textual quality of the 
explanation (described in Section 5.3), and (3) an indicator of 
which SR+E constituent measure produced the explanation. For 
each pair, we assigned the explanation with the lowest (i.e. best) 
mean rank a “1” and every other explanation a “2”. We trained a 
ranker to predict the best (“1”) explanation using SVMRank [18].  

The results of this experiment can be found in Table 2. We report 
these results in terms of coverage, which is the percentage of pairs 
for which one or more explanations were available, and precision, 
which is the percentage of pairs for which AtlasifySR+E correctly 
identified the best explanation (when one or more were available). 

Using 10-fold cross-validation, our best performing model had a 
precision of 56%, which is significantly better than random 
guessing (χ2 = 13.2, p < .01) and only 2% lower than mean inter-
annotator agreement (58%). In other words, the model predicts the 
best explanation almost as well as humans agree on the best 
explanation. The difference between the model and the inter-
annotator agreement is in fact not significant (χ2 = 0.51, p = .48). 
Moreover, this model results in a slightly better precision 
(insignificantly so) than WAGDirect, the best SR+E algorithm for 
explanations, and has a much higher coverage; it can return an 
explanation when any of the constituent algorithms can find an 
explanation. In our experiment, this was 93.3% of the time, 
compared to WAGDirect’s 26.8%. 

It is important to note that a model based only on which SR+E 
method was used (“Measure indicators only”) performs nearly as 
well as the full model, and the difference between them is not 
significant (χ2 = 1.27, p = .15). That is, the relative performance of 
the constituent SR+E explanation generators accounts for most of 
the predictive power of our ranking model.  

5.3 Quality of Mined Text  
The final machine learning experiment we will discuss assesses 
the quality of text mined from Wikipedia. This quality 
assessment, along with relationship strength estimates, is used to 
calculate the informativeness of the explanations for each of 
AtlasifySR+E’s constituent SR+E measures (Section 4). This 
informativeness is then used to rank explanations within each 
individual measure.  

Hand-annotated data was supplied by four annotators, each of 
whom rated 500 snippets on a scale from 0 to 4 according to the 
quality of the natural language. Each snippet describes one “leg” 
of a relationship (e.g. Figures 10a and 10c have two snippets, 
while 10b has one). Quality was assessed using several factors, 
including readability and clarity of relationship described. Inter-
annotator reliability was r = 0.51 (calculated with Fisher’s z-value 
transformation [41]). 

For training, each snippet was assigned two types of features: 
syntactic (e.g. lack of a verb) and contextual (e.g. at the top of the 
page). After experimenting with a variety of regression models, 
we found a linear regression model to be the most accurate. Using 
10-fold cross-validation, this model was able to achieve a mean 
correlation of r = 0.32 (Table 3). While the combined model 
outperforms a model trained on only a single type of feature,  
models trained on either type of feature alone were not found to 
have significantly worse predictive power.  

Model features r with gold standard 

All features 0.32 
Contextual features only 0.29 
Syntactic features only 0.24 
Human Inter-rater Agreement 0.51 

Table 3. The results of our text snippet quality experiment. 

6. CONCLUSION AND FUTURE WORK 
In this paper, we showed how thematic cartography can be used 
for domain-neutral exploratory search, demonstrated this process 
in a working system called Atlasify, presented two use cases, and 
evaluated its key functions. We have also made three additional 
contributions that have implications outside of exploratory search. 
First, we presented explicit spatialization, which brings the 
benefits of online mapping and geographic information retrieval 
into domains beyond geography. Second, we introduced 
explanatory semantic relatedness (SR+E) measures, which extend 
popular SR measures to make them user-understandable. We built 
and evaluated an SR+E measure that produces explanations 
significantly better than those of baseline approaches. Finally, 
through its method of merging the benefits of its six constituent 
SR measures, our new SR+E measure produces SR estimates that 
are statistically indistinguishable from the state-of-the-art without 
relying on language specific or proprietary data. 

Future work includes applying ES in traditional GIR applications 
and SR+E in traditional SR applications. We are also 
incorporating into AtlasifySR+E DBpedia’s structured 
relationships, which are concise but of limited coverage. Finally, 
we are preparing a lab-based evaluation of Atlasify, an essential 
next step [40], as well as looking to the deploy the system more 
widely to see how our approach is leveraged by real users. 
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Model features Precision Coverage 
All features 56% 93% 
Measure indicators only 51% 93% 
Random 39% 93% 
WAGDirect (Highest Precision 
Single SR Measure) 

55% 27% 

MilneWitten (Highest 
Coverage Single SR Measure) 35% 80% 

Table 2. Results of our explanation ranking experiment.  
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