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ABSTRACT
In just a few years, crowdsourcing markets like Mechani-
cal Turk have become the dominant mechanism for building
“gold standard” datasets in areas of computer science rang-
ing from natural language processing to audio transcription.
The assumption behind this sea change — an assumption that
is central to the approaches taken in hundreds of research
projects — is that crowdsourced markets can accurately repli-
cate the judgments of the general population for knowledge-
oriented tasks. Focusing on the important domain of seman-
tic relatedness algorithms and leveraging Clark’s theory of
common ground as a framework, we demonstrate that this as-
sumption can be highly problematic. Using 7,921 semantic
relatedness judgements from 72 scholars and 39 crowdwork-
ers, we show that crowdworkers on Mechanical Turk pro-
duce significantly different semantic relatedness gold stan-
dard judgements than people from other communities. We
also show that algorithms that perform well against Mechan-
ical Turk gold standard datasets do significantly worse when
evaluated against other communities’ gold standards. Our
results call into question the broad use of Mechanical Turk
for the development of gold standard datasets and demon-
strate the importance of understanding these datasets from a
human-centered point-of-view. More generally, our findings
problematize the notion that a universal gold standard dataset
exists for all knowledge tasks.
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INTRODUCTION
Less than a decade after their inception, crowdsourcing mar-
kets like Amazon’s Mechanical Turk1 have transformed re-
search and practice in computer science. While computer-
supported cooperative work researchers have largely focused
on understanding crowdsourcing markets, analyzing and de-
veloping crowdsourcing mechanisms, and finding new op-
portunities to apply these mechanisms, other areas of com-
puter science have also embraced crowdsourcing. In natu-
ral language processing and many areas of artificial intelli-
gence, crowdsourcing markets — and in particular Mechani-
cal Turk — have become the de facto method of obtaining the
critical resource known as human-annotated ”ground truth”
datasets.

Human-annotated ground truth datasets (henceforth referred
to by their more common and simpler name: “gold stan-
dards”) support a large variety of knowledge-oriented tasks.
In general, these datasets capture human beings’ “right an-
swers” for tasks when no obvious answer for a given problem
exists or can be algorithmically created. Gold standard data
support algorithms in a wide range of problem spaces rang-
ing from sentiment analysis [40], to audio transcription [8],
to machine translation [5].

In 2008, Snow et al. marked a shift to Amazon’s Mechan-
ical Turk (AMT) for collecting gold standards [38]. They
showed that AMT workers (known as“turkers”) closely repli-
cated five well-known gold standard datasets in the domain
of natural language processing, but faster and much more
cheaply. Out of this paper, a widely-accepted precept has
arisen: AMT workers produce gold standard datasets for
knowledge-oriented tasks that are more or less the same as
those produced by other groups of people (traditionally do-
main experts, peers, or local undergraduates). We refer to
this as the “turkers for all” precept.

Much work in the social sciences, however, would suggest
that the “turkers for all” precept will often not hold. For in-
stance, in Clark’s definition of common ground, a cultural

1https://www.mturk.com
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community — whether it is demarcated by professional, re-
ligious, ethnic, or other lines — is defined by the (mutually
known) shared knowledge it has about a given set of con-
cepts and their relationships [9]. It should follow then that the
people who belong to different cultural communities would
provide different answers to a variety of knowledge-oriented
tasks. For instance, in a text categorization task, we might ex-
pect that scientists would categorize a document about Albert
Einstein as a biography of a famous scientist, but a group of
peace activists may also categorize it as a biography of a pub-
lic figure against nuclear weapons, a group of Jewish scholars
may want to categorize the text as a biography of a famous
Jewish person, and so on [23]. We refer to the hypothesis that
different communities produce different gold standards as the
“communities matter” precept.

This paper analyzes the tension between the Snow et al.
“turkers for all” and Clark “communities matter” precepts.

We focus on two broad questions at the core of the tension
between these two precepts:

RQ1: Do different cultural communities produce different
gold standards?

RQ2: Do algorithms perform differently on gold standards
from different cultural communities?

We study these questions within the field of natural language
processing, in the domain of semantic relatedness (SR) algo-
rithms. Generally speaking, SR algorithms provide a single
numeric estimate of the number and strength of relationships
between any two concepts a and b (typically between 0 and
1) [20]. For instance, if concept a is “pyrite” and concept b is
“iron”, we might expect a good SR algorithm to output a high
value for SR(a, b). Conversely, if concept b is replaced with
“socks”, we might expect the opposite. SR has a nearly 50
year tradition of evaluation against gold standards, starting
with the RG65 dataset collected by Rubenstein and Goode-
nough [36].

In this paper, we describe an experiment with 111 partici-
pants that shows that the “communities matter’ hypothesis
is supported for both RQ1 and RQ2. Specifically, we show
that AMT workers, communities of general academics and
subject-area experts each have their own “gold standard” for
a series of SR problem instances. Broadly, as the cultural
community’s depth of knowledge increases, they seem to per-
ceive more connections between concepts (instead of more
differences). In addition, we show that SR algorithms de-
termined to be “start-of-the-art” in their ability to replicate
a gold standard dataset are indeed only “state-of-the-art” for
a given cultural community. More specifically SR algorithms
have difficulty matching the SR judgements of subject experts
(particularly psychologists), even when trained on data from
that same group.

We also find support for the “turkers for all” precept in some
contexts. Mechanical Turk serves as a tremendously valu-
able resource offering fast, inexpensive data. Thus, we iden-
tify areas where turkers are more likely to provide gold stan-
dard judgements that are consistent with other communities.

Specifically, for knowledge-oriented tasks for which all or
most relevant information is in the common ground of a wide
variety of cultural communities, using Mechanical Turk to
develop gold standards is likely more appropriate.

To summarize, our work offers three main contributions:

1. We show that AMT-derived gold standards for knowledge-
oriented tasks are often not representative of other commu-
nities. We explicitly probe when these differences occur.

2. We show that algorithms that perform well against an
AMT-derived gold standard do not necessarily perform
well against gold standards produced by other populations.

3. Our work problematizes the notion of the gold standard in
general, highlighting types of tasks for which gold stan-
dards may be problematic and types of tasks for which
which they are likely to be appropriate.

These findings have immediate implications for a number of
constituencies, for instance researchers who use AMT and
other crowdsourcing platforms, SR researchers, and practi-
tioners designing systems that rely on the automatic comple-
tion of knowledge tasks, particularly systems for domain ex-
perts such as doctors, musicians, scholars, etc. More broadly,
by problematizing the gold standard dataset, this work has
implications for a methodology employed by researchers in a
variety of areas of computer science.

Below, we first cover work related to this research and high-
light our methodological approach. Following that, we report
the results of our experiment. We then discuss our findings in
more detail. Finally, we close by detailing the limitations of
our study and highlighting future work in this area.

RELATED WORK

Semantic relatedness
The automatic estimation of the relatedness between two con-
cepts has been an active area of research in artificial in-
telligence (AI) and natural language processing (NLP) for
decades [36, 35, 6, 39, 14].

Semantic relatedness (SR) algorithms — the family of algo-
rithms that perform this estimation – underly an enormous
variety of applications. These applications range from low-
level tasks like word sense disambiguation (e.g. [28]) and
coreference resolution (e.g. [32]) to high-level technologies
like search [6, 34] and information visualization systems [4,
37, 3].

SR algorithms are typically trained and evaluated against
datasets of “gold standard” relatedness judgements from hu-
man participants (e.g. [12, 25]). The literature treats these
judgements as by and large universally correct - it does not
consider how the population of gold standard contributors
(typically university students or AMT crowdworkers) aligns
with that of the target application.

The vast majority of work in the semantic relatedness domain
is dedicated to developing algorithms that can replicate the
human judgements present in a small number of benchmark
gold standard datasets. These algorithms are both diverse and
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numerous, with approaches grounded in areas ranging from
network analysis (e.g. [26]) to information theory (e.g. [35])
to information retrieval (e.g. [14, 34]) to the semantic web
[13]. SR algorithms rely on a source of world knowledge,
which is most commonly derived from Wikipedia (e.g. [14])
or WordNet (e.g. [35]).

WordSim353 [12] is the most widely-used benchmark dataset
of SR judgements. The community(ies) from which the an-
notators of WordSim353 were selected is not explicitly dis-
closed. More recently, other SR benchmark datasets have be-
gun to appear in the literature, including TSA287 [34] and
MTurk771 [18], all of which are made up of judgements from
Mechanical Turk. Understanding the effects of this recent
trend towards using Mechanical Turk as a source of human
relatedness judgements is one of the key motivations behind
our consideration of Mechanical Turk in this research.

Some algorithmic SR research has included sub-studies re-
lated to our research. For instance, while developing a
new semantic relatedness algorithm designed specifically for
the bioinformatics domain, Pedersen et al.[30], tangentially
noted that SR judgements from doctors and medical coders
differed, remarking that “by all means, more experimentation
is necessary” in this area. In another primarily algorithmic
paper, Pirró and Seco report on the effect of language ability
on a small set of concept pairs. They found very high levels
of agreement between native and non-native English speak-
ers at the same university after excluding non-native outlier
judgements [31]. Snow et al. [38] compared turkers’ assess-
ments to traditional SR annotators, also finding very high lev-
els of agreement. Our work is distinguished from that above
in scope, depth and, ultimately, outcome. We collect a dataset
an order of magnitude larger than these previous datasets. We
leverage this data to robustly probe the relationship between
community membership and SR ratings. We also reveal di-
vergence in intra- and interrater consistency across commu-
nities and demonstrate the effect of domain-related concepts
versus general concepts.

In addition to its importance to a large number of research
projects and applications in NLP and AI, semantic related-
ness has also played a role in the HCI domain. Liesaputra
and Witten have leveraged SR algorithms to create electronic
books that improve performance on reading tasks [24] and
Grieser et al. [17] did the same assess the relatedness of ex-
hibits for museum visitors. Visualization has been a particu-
larly active area of interest, with semantic relatedness being
used, for instance, to cluster conversation topics in a system
that highlights salient moments in live conversations [4], de-
velop geospatial information that facilitates the development
of spatial thinking skills [37], among other applications (e.g.
[3]).

Cultural communities and online differences
To situate the results of our gold standard dataset analyses
and evaluations of semantic relatedness algorithms, this work
adapts Clark’s definition of cultural communities from his
theory of language as joint action [9]. As part of this the-
ory, Clark defines a cultural community as “a group of people
with shared expertise that other people lack.” These groups

can be delineated by geography, profession, language, hob-
bies, age, whether or not they are a part of an online commu-
nity (e.g. AMT) and so on, but what they all share are unique
sets of shared knowledge and beliefs. While Clark’s theory
is typically (and widely) applied in understanding how inter-
locutors work together to build a shared understanding of a
given domain [15, 16], in this work, we are interested in the
pre-existing shared knowledge that exists in cultural commu-
nities. We will show that Clark’s formulation can help ex-
plain which gold standard datasets are liable to cultural varia-
tion and which ones will stay roughly constant across cultural
groups (and why).

Cultural differences have been shown to influence annota-
tions on tasks other than SR estimation. Dong and Fu demon-
strated that European Americans tag images differently from
people with a Chinese background [10] and a similar result
has been identified across gender lines [33]. Similarly, Dong
et al. found that culture has an effect not only on image tags
themselves, but also annotators’ reactions to tag suggestions
[11]. However, this work has not examined cultural differ-
ences on gold standard datasets and has not sought to under-
stand the effect of cultural bias on algorithm performance as
we do here. Along the same lines, researchers have looked
at the demographics of workers on AMT [22, 29], but have
not focused on the effect these demographics have on gold
standard datasets.

Crowdsourcing gold standards
A related area of research outside of the SR domain compares
the performance of crowdworkers to that of local human an-
notators. Snow et al. established that “turkers” are able to
closely replicate the results of local annotators on many la-
beling tasks in NLP in addition to SR [38]. Similar results
have been seen in studies in psychology [7], translation [5],
graphical perception [21], and a number of other areas. Our
work adds to the literature that explores the relationship be-
tween “the crowd” and other annotators. However, unlike
most research in this area, we find that judgements can differ
substantially between these two groups of annotators. Impor-
tantly, our work also provides insight into the types of tasks
for which “the crowd” and others will differ, and those for
which this is not the case.

SURVEY METHODOLOGY
To measure the effects of cultural community on gold stan-
dards, we collected SR gold standards from different cultural
communities2 using an online survey. Before detailing the
survey design and methodology, we provide an overall pic-
ture of its experimental and experiential design.

We recruited subjects from two cultural communities related
to the “turkers for all” and “communities matter” precepts:
AMT crowd workers and scholars. The survey collected SR
assessments from subjects; a single SR assessment is a relat-
edness rating between 0 and 4 (inclusive) by a subject for a
concept pair (e.g. a rating of 4 by turker number 12413 for the
pair “movie”, “film”). We followed common practice of SR
2The SR datasets in this paper are available online at
http://shilad.com/pluraSR200.html
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gold standards, which collect assessments from five to twenty
subjects for each concept pair and report the mean SR rating
for each pair.

To probe the applicability of each precept, we collected as-
sessments for two type of concept pairs: general knowl-
edge concept pairs (i.e. “television” and “admission”), and
domain-specific concept pairs in history, biology, and psy-
chology. With respect to Clark, we hypothesized that general
knowledge concepts and their interrelationships would be rel-
atively likely to be in the common ground of a wide variety of
cultural groups. We hypothesized that domain-specific con-
cepts in history, biology, and psychology and their interre-
lationships were less likely to be in a broadly-held common
ground. In other words, people from different cultural com-
munities (especially professionally delineated ones) would
have a different understanding of each concept in these pairs,
as well as the relationships between them.

All subjects completed an identically structured online sur-
vey. To summarize the survey’s experimental design, it col-
lected assessments for the two different types of concept pairs
(general and domain-specific). Assessments came from three
different cultural communities: AMT workers, scholars, and
scholar-experts who were experts for a particular domain-
specific assessment (e.g. a psychologist assessing “cogni-
tion” and “language”). Membership in each of the three
communities is question-specific for researchers; a single re-
searcher may be a scholar-expert for some concept pairs (e.g.
psychology) and a scholar for others (e.g. history).

After consenting to the study, subjects entered basic demo-
graphic information (gender, education level) and indicated
whether they conduct scholarly research. Those who did
(scholars) provided their primary, secondary, and tertiary
fields of study. Next, subjects provided 69 SR assessments
spanning 6 pages. Subjects rated each concept pair on a 5
point scale ranging from 0 (not related) to 4 (strongly related)
(Figure 1). Subjects could indicate that they “did not know
a term” instead of providing an SR rating. After completing
the 69 assessments, subjects were asked if they would like to
complete a second round of assessments.

Selection of concept pairs for each subject:
Each subject provided 69 assessments of concept pairs. All
subjects provided SR judgements for (a) 10 general knowl-
edge assessments, (b) 50 domain-specific assessments chosen
from the fields of biology, history, and psychology, (c) 4 val-
idation assessments, and (d) 5 duplicate assessments. Each
type of assessment is described in more detail below. The
survey randomized the order of all concept pairs and ensured
that each page spanned a variety of estimated relatedness val-
ues.

General knowledge concepts: General knowledge terms were
chosen from WordSim353. The concept pairs in WordSim353
consist of common nouns (e.g. “television”, “admission”)
and a few widely-known named entities (e.g. countries, fa-
mous political figures). We randomly sampled 50 concept
pairs from the dataset. The sample was stratified to ensure
that the concepts captured a diverse set of relatedness values.

Figure 1. The rating page in the online survey. The subject has indicated
that they do not understand the phrase “cognitive psychology.”. The
assessments on this subject’s page include validation concepts (“movie”,
“film”, 5 total), psychology concepts (25 total), and history concepts (25
total).

Domain-specific concepts: We chose 50 candidate concept
pairs for each of the fields of biology, history, and psychol-
ogy. Subjects who were biologists, historians, or psycholo-
gists provided 25 domain-expert assessments from their field
and 25 assessments from a second target field (history, biol-
ogy, or psychology). All other subjects provided 25 domain-
specific questions from each of two target fields (two of his-
tory, biology, or psychology). Further rationale and and our
methods for choosing these concept pairs is detailed in the
following section.

Validation assessments: We added four validation assess-
ments following the procedure of [18]. These assessments
were intended to identify subjects who were not completing
the survey in good faith. These concepts pairs contained the
two most related (“female”, “woman” and “film”, “movie”)
and least related concept pairs (“shirt”, “tiger” and “after-
noon”, “substance”) from [18]. Subjects that did not accu-
rately rate these pairs are excluded from our results. This
validation test would exclude 94% of subjects who guess ran-
domly.

Duplicate assessments: Subjects also completed five dupli-
cate assessments to measure intra-rater agreement. All dupli-
cate concept pairs were separated by at least one survey page.

Selecting domain-specific concept pairs:
The domain-specific concept pairs were harvested using the
Macademia website3 that visualizes research connections be-
tween scholars. Over 2000 users have created profiles on the
website, which involves entering one’s research interests as
free-form text. We selected three diverse and popular fields
(history, psychology, biology) as target knowledge areas. For
each field, we selected the most common 16 interests, as we
hypothesized that these were most likely to be within the
common ground of members of each individual field4 speci-

3http://macademia.macalester.edu
4We chose this cutoff because at least 16 interests were used three
times in all three fields.
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knowledge type turker scholar scholar-expert
general 461 861 n/a

domain-specific 2,218 3,086 1,295
Table 1. Experimental manipulations in our study. Rows indicate
knowledge type, and columns indicate community. Each cell contains
the number of ratings in that condition. For example, 1,295 ratings
have been provided for domain-specific concept pairs by scholar-experts
(scholars with expertise in the field of the concepts in a pair).

fied by users in the field as candidate concepts. We randomly
chose 50 concept pairs from the 16 candidate concepts.5

Subject recruitment and basic statistics:
As noted above, we recruited subjects via the Macademia
website and Amazon’s Mechanical Turk. We emailed invi-
tations to a subset of Macademia users: all psychologists, bi-
ologists, and historians and a random sample of other users.
We also hired “master” Mechanical Turk workers, who the
AMT website describes as “an elite groups of Workers who
have demonstrated accuracy on specific types of HITs on the
Mechanical Turk marketplace6”. We chose to recruit 45 turk-
ers to match the number of scholar and scholar-expert sub-
jects. All crowdworkers were paid at an average rate above
the United States federal minimum wage.

In total, 145 subjects participated in the study. Twenty sub-
jects did not complete the validation assessments accurately
or did not finish the survey and are excluded from our results.
To clearly delineate differences between turkers and schol-
ars, we excluded users who were neither turkers nor scholars
(10 subjects) and turkers who reported they were scholars (4
subjects).

Of the 111 final valid subjects, 39 were turkers, 42 were
scholars in history, psychology, or biology, and the remain-
ing 30 were scholars in some other field. 60% of valid sub-
jects were female and 40% were male. All scholars indicated
they held a graduate degree. Of the turkers, 13% had a grad-
uate degree, 59% indicated their highest degree was a two- or
four-year degree, and 28% indicated their highest degree was
a G.E.D. or high school degree.

Table 1 shows the experimental manipulations we utilized
in our study. The rows of the table indicate the knowledge
type of the concept pairs (i.e. general or domain-specific).
The columns of the table indicate the community of the
subject. The numbers in each cell indicate the total num-
ber of assessments (not users) for each condition. For ex-
ample, Table 1 reveals that we collected 861 total assess-
ments of general knowledge concept pairs from all scholars
(the general/scholar condition) and 1,295 assessments in the

5We followed the procedure of Radinksy et al. [34] to ensure that the
50 pairs selected for each field captured a diverse set of relatedness
values. Radinksy and colleagues randomly sampled concept pairs
stratified by pointwise mutual information calculated using a New
York Times corpus. We followed the same procedure, but used a
domain-specific corpus for each field, each of which contained 800
scholarly publications in the field chosen by querying the top 50
documents in Google Scholar for each of the 16 interests in the field.
6https://www.mturk.com/mturk/help?helpPage=worker

domain-specific/scholar-expert condition, which contains rat-
ings from scholars who have domain expertise with regard to
a given concept pair. Similarly, Table 1 shows that we re-
ceived 461 assessments from turkers on general knowledge
concept pairs (the general/turker condition) and 2,218 assess-
ments in the domain-specific/turker condition.

Note that all subjects completed assessments that span mul-
tiple conditions: turkers assessed both specific and general
concept pairs; biologists assessed some concept pairs in their
field, some in either psychology or history, some from the
general domain; and so on. The upper right column is not
studied because the concepts in WordSim353 are not associ-
ated with a specific domain of expertise.

Each concept pair was assessed by an average of 46 sub-
jects. Subjects did not understand at least one concept in
1.6% of assessments. These assessments are not included in
our results. Some analyses in later sections compare different
groups’ responses to each concept pair. To support these anal-
yses, each group from Table 1 must have a reasonable num-
ber of responses to each concept pair. The biggest challenge
to sample size occurs in the domain-specific/scholar-expert
(scholar-expert responses for domain-specific concepts) be-
cause only a small subset of our population has domain exper-
tise in a given concept. The mean number of scholar-expert
responses per pair was 8.6 (median=9, min=6). Other condi-
tions have more responses. For example, there are 14.8 (me-
dian=15, min=7) assessments per concept pair in the domain-
specific/turker condition.

RQ1: EFFECTS ON GOLD STANDARDS
In this section, we analyze the judgements collected from the
online survey to answer RQ1, which asks whether different
cultural communities produce different gold standards. We
study two characteristics of the human SR assessments that
constitute a gold standard. First, we measure whether dif-
ferent communities coalesce around different numerical esti-
mate values for a particular concept pair.

RQ1a: Do different communities produce different semantic
relatedness estimates?

RQ1a studies whether a gold standard dataset must be
matched to the audience of the system it serves. For exam-
ple, if turkers and historians differ in their mean assessment
of the relatedness of“sexuality” and “African history” (look-
ing ahead: they do), a system serving historians may not be
able to rely on a gold standard created by turkers.

The second research question measures whether different cul-
tural communities exhibit different levels of agreement within
their respective communities.

RQ1b: Do different communities exhibit different levels of
agreement in their SR ratings?

If the answer to this question is yes, some cultural communi-
ties will need more contributors than others to obtain a desired
level of gold standard sample error [1].

For each of four different analysis (two each for RQ1a and
RQ1b), we report differences between the five conditions in
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Figure 2. The distribution of ratings for domain-specific knowledge for
turkers, scholars, and scholar-experts. In general, turkers judge con-
cepts as less related than scholars and scholar-experts. For example,
turkers are four times more likely to rate a domain-specific pair a “0”
than scholar-experts.

Table 1 corresponding to the two knowledge types (general,
domain-specific) and three cultural contexts (turker, scholar,
scholar-expert).

RQ1a: Distribution of assessments
We begin by analyzing the overall distribution of SR ratings
for each knowledge type and community. For general knowl-
edge, turkers and scholars generate a similar distribution of
ratings. There were no significant differences in mean SR
rating between turkers (µ = 2.24, σ = 1.47, n = 461)
and scholars (µ = 3.36, σ = 1.4, n = 887). However, an
ANOVA that controls for concept pair means does indeed
reveal significant differences between turkers and scholars
(p < 0.05). We return to this point in the next section (Table
2).

The distribution of ratings for domain-specific knowledge
(Figure 2) show marked differences. In aggregate, turkers rate
pairs the lowest (mean 2.0), followed by scholars (2.42), and
scholar-experts (2.67). Chi-square tests shows these effects to
be significant (χ2 = 279, p < 0.0001). These differences are
most apparent at the scale extremes. Turkers assign 18% of
judgements a relatedness of 0 compared to 9% of scholars and
4% of scholar-experts. On the opposite end of the spectrum,
scholar-experts assign 30% of judgements a 4 compared to
24% and 15% of judgements from scholars and turkers re-
spectively.

In these results, we see our first evidence that both the ’turk-
ers for all’ and “communities matter” precepts hold in certain
contexts. As Clark’s notion of cultural communities suggests,
scholar-experts perceive stronger relationships between con-
cepts in their common ground when compared to turkers as-
sessing concepts not in their common ground. The same is
true to a lesser degree for scholars (non-experts), although
they appear to share more common ground with scholar-
experts, which is to be expected given their shared environ-
ment and experience.

concept 1 concept 2 turker mean scholar mean p-value
Arafat peace 0.33 2.38 ***

hardware network 1.75 3.15 ***
energy consumer 1.09 2.45 **
plane car 1.71 2.79 **
dollar yen 2.89 3.78 **

Table 2. General knowledge concepts with the largest difference between
turker and scholar means (*** = p < 0.001, ** = p < 0.01 according to
a two-tailed t-test).

RQ1a: Correlation between community consensus rat-
ings
In this section, we probe differences between average com-
munity ratings for both general and domain specific knowl-
edge. For each concept pair, we calculate the mean at
the community-level and combine these values to create
community-level “consensus lists.”

For general knowledge concepts, the Spearman correlation
between consensus lists for turkers and scholars (ρs =
0.91, n = 50) approaches the estimated within-community
correlation (ρs = 0.94).7 While the between-community cor-
relation for general concepts is high, there are certain concept
pairs that are large outliers. Table 2 shows the general knowl-
edge concept pairs that displayed the largest differences be-
tween turker and scholar ratings. As a reminder, assessments
use a zero to four scale. Most notably, while turkers judge
the relatedness between “Arafat” and “peace” to be 0.33 on
average, or basically not related at all, the mean scholar rat-
ing for the pair is a moderate 2.38. As noted above, the
(“Arafat”, “peace”) pair comes from the WordSim353 dataset,
which has been used to evaluate dozens of SR algorithms.
The raters of WordSim353 also gave the pair a moderate score
(mean of 6.73 on a continuous 10-point scale). This suggests
that SR algorithms have been evaluated (and trained, in many
cases) using a point of view closer to scholars than turkers on
this controversial subject. The reasons behind the significant
divergence on this pair are unclear, but this result certainly
raises the prospect of controversy (i.e. relationship valence)
having an effect on semantic relatedness judgements across
communities.

For domain-specific concepts, we find broader differences be-
tween communities’ consensus ratings. While the correlation
between turkers and scholars (ρs = 0.88, n = 150 ques-
tions) nearly matches the within-condition correlation esti-
mates (ρs = 0.89, n = 150), scholar-experts and turkers
are much farther apart in their consensus lists (ρs = 0.76,
n = 150). Scholars and scholar-experts are in-between
(ρs = 0.82, n = 150). As with the general knowledge
analysis, the concept pairs with largest differences provide
insight into the dynamics of community disagreement (Table
3). This list appears to favor broad, complex concepts (“sex-
uality”, “African history”, “popular religion”). One hypothe-
sis is that scholar-experts’ deep domain knowledge includes

7The use of Spearman’s correlation coefficient is considered to be a
best practice in the SR literature because it does not assume inter-
val scales, does not make any assumptions about the distribution of
ratings, and for a number of other reasons [42]. Within-condition
correlations were estimated using a bootstrap procedure.
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group 1 group 2 concept a concept b group 1 mean group 2 mean p-value
psychophysiology aging 1.30 3.15 ***

mturk scholar introductory biology statistics 0.80 2.11 ***
research methods linguistics 1.23 2.51 ***

sexuality African history 0.60 2.80 ***
mturk scholar-expert cognition acculturation 0.73 2.83 ***

modern European history women 1.56 3.62 ***
sexuality historical memory 2.07 3.50 **

scholar scholar-expert South Asia popular religion 2.31 3.70 **
collective memory women 2.58 3.92 **

Table 3. Domain-specific concepts with the largest difference between turker and scholar means (*** indicates p < 0.001, ** = p < 0.01 according to a
two-tailed t-test).

specific relationships that link concepts that may appear un-
related to non-experts (scholars and turkers). This would also
explain scholar-experts’ higher absolute SR scores.

These results show that the “communities matter” precept ex-
tends beyond individuals in communities to the gold stan-
dards that aggregate individuals’ assessments. As with the
previous analysis, scholars agree more often with scholar-
experts than turkers, both in rating distribution and consensus
rank order. This may be a sign of interdisciplinarity. Some
scholars’ specialized knowledge may reach beyond their core
field of study. For example, a computer scientist who studies
social computing may have some expertise in the SR judge-
ment for the concept pair “personality” and “social psychol-
ogy”. On the other hand, these results may transcend domain
knowledge and reflect other cultural commonalities shared by
scholars.

RQ1b: Inter-rater agreement
We next examine the inter-rater agreement of judgements in
different conditions by measuring the absolute difference be-
tween judgments for two raters in the same community.8

To calculate absolute differences, for each concept pair we
compared responses from all pairs of human raters within a
community. We report the mean absolute error (MAE) be-
tween the responses and the percentage of responses that dis-
agreed by more than one rating point (e.g. 2 vs 4, or 2 vs 5).
We determined confidence intervals for MAE and percent-
age significant disagreement using a bootstrapping procedure
[27] and report 95% confidence intervals.

For general knowledge concepts, we found no meaningful
differences in the agreement of within-group ratings. Turk-
ers and scholars exhibited low absolute errors between ratings
(turker MAE = 0.92±0.013, scholar MAE = 0.89±0.025) and
few significant disagreements (22% ± 1.0 for both). For
domain-specific concepts, we found significant differences
in inter-rater agreement. Turkers disagreed most often, fol-
lowed by scholars, followed by scholar-experts. These re-
sults held for both MAE (turker = 1.06 ± 0.007, scholar =
0.94 ±0.005, scholar-expert = 0.86±0.007) and percent sig-
nificant disagreements (turker = 28%± 0.4, scholar = 23%±
0.3, scholar-expert = 19% ± 0.6).

8We also calculated Pearson correlations between individual raters
and found consistent results.

The difference between general knowledge and domain-
specific agreement is particularly striking, and begs further
study into the mechanisms underlying judgements of domain-
specific concepts. The similar levels of agreement in general
knowledge judgements suggest that agreement is not simply
a function of professional background (scholar vs turker), but
is also related to a subject’s expertise in the topics of a judge-
ment.

RQ1b: Intra-rater agreement
Finally, we examine the internal agreement within individual
subjects. Recall that each subject provided five duplicate rat-
ings for concept pairs, where the duplicating rating was sepa-
rated from the original rating by at least one page. We report
the average difference (MAE) between all subjects’ duplicate
ratings within a community. Since this represents a paired
experimental design (unlike the previous analysis), we can
calculate significance using straightforward t-tests.

Overall, the intra-rater agreement of ratings was high
(MAE=0.38). Subjects exhibited higher intra-rater agree-
ment for general concepts (MAE=0.237, σ=0.52, n=114) than
domain-specific concepts (MAE=0.406, n=554, σ=0.610)
These differences are significant (two-sample t-test, p <=
0.05).

As with inter-rater agreement, we saw no significant differ-
ences in the intra-rater agreement of general knowledge con-
cepts for turkers (MAE=0.24, σ=0.532, n=42) and schol-
ars (mae=0.224, σ=0.517, n=67). We did find signifi-
cant differences in the intra-rater agreement of domain-
specific concepts. Scholar-experts agreed with themselves
most (MAE=0.260, σ=0.441, n=96), followed by schol-
ars (MAE=0.382, σ=0.57, n=251), followed by turkers
(MAE=0.537, σ=0.738, n=164). These pairwise differences
are significant (two-tailed t-test, p <= 0.05).

The results for intra-rater agreement parallel the results for
inter-rater agreement. We observe no significant community
differences in agreement for general knowledge terms, but
we do find significant differences for domain-specific knowl-
edge. Scholar-experts agree most strongly, followed by schol-
ars, followed by turkers.

RQ1: Summary
In summary, we find support for the “turkers for all” pre-
cept for general knowledge tasks, and “communities matter”
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for domain-specific concepts. We observe community differ-
ences for domain-specific concepts across several measure-
ments: differences in individual ratings, differences in aggre-
gate consensus ratings, and agreement within and between
raters.

These finding have direct implications for practitioners and
researchers collecting domain-specific gold standards. When
collecting a gold standard researchers and practitioners must
consider the audience of the gold standard, the system or al-
gorithm that uses it, and the type of knowledge. In addition,
to achieve a desired level of sample error in a domain-specific
gold standard, more data is needed from people without ex-
pert knowledge than with [1]. Because domain expertise is
often valued in the marketplace, this finding exposes a mon-
etary tradeoff: more data that is inexpensive from general
workers, or less data that is expensive from domain experts.

RQ2: EFFECTS ON ALGORITHMS
We have shown that under some important conditions, differ-
ent communities do indeed produce different gold standards.
Next, we analyze whether the algorithmic “communities mat-
ter” precept also holds. That is, we ask:

RQ2: Do algorithms perform differently on gold standards
from different cultural communities?

For example, given a particular algorithm and set of prob-
lem instances (e.g. concept pairs), do we see different results
when the algorithm is trained and evaluated on data from biol-
ogists compared to turkers? If the algorithmic “communities
matter’ precept holds, system designers need to consider the
relationship between three entities: the audience they serve,
the communities producing their gold standard, and the algo-
rithms that power their system.

We study this question by measuring the performance of SR
algorithms on gold standards produced by each cultural com-
munity. We evaluate three state-of-the-art algorithms that
have been shown to perform well on common gold standards:

1. MW, an algorithm developed by Milne and Witten that fist
disambiguates each of the two phrases to Wikipedia arti-
cles (i.e. the phrase “Apple” → the article “Apple Inc.”)
and then measures the overlap in links to and from the two
articles [41] (MW).

2. ESA, Gabrilovich et al.’s Explicit Semantic Analysis algo-
rithm creates a “concept vector” for each phrase by search-
ing for Wikipedia articles whose text closely match the
phrase [14]. The similarity between the phrases is the co-
sine similarity between the two concept vectors.

3. ENS, an ensemble algorithm that linearly combines a vari-
ety of SR algorithms as described by Hecht at al. [19].

We developed implementations of each algorithm available
in the WikiBrain software framework 9, calibrated to per-
form similarly to published accuracy measurements [19]. Al-
though SR research typically tunes, trains, and tests algo-
rithms on the same dataset, we employ cross-validation be-
9http://wikibrainapi.org

MW ESA ENS
Spearman’s correlation, ρs 0.59 0.69 0.76

Table 4. Results for the three algorithms on the WordSim353 dataset.
The three algorithms perform relatively similarly on other widely used
datasets. Our use of cross-validation leads to slightly lower correlations
than reported in the SR literature, but a more robust evaluation.

Figure 3. The correlation between algorithmic estimates and gold stan-
dard datasets for each of the gold standards and algorithms. The linear
ensemble performs best across all groups, followed by MW and ESA.
All algorithms are less accurate for scholar-experts than other cultural
communities.

cause it is common practice in the CSCW and machine learn-
ing communities. Cross-validation results in slightly lower
accuracy measurements than described in [19], but constitutes
a more realistic measurement.

As a frame of reference, Table 4 shows the accuracy for the
SR three algorithms on the widely used WordSim353 dataset
[12]. The table shows Spearman’s correlation, ρs, between
SR estimates and the actual SR values in the gold standard.
Spearman’s correlation is the most commonly used evalua-
tion measure in the SR community. The linear ensemble ENS
performs best, followed by ESA and MW. These algorithmic
results (ENS best, ESA second, MW third) generally hold
across other reference datasets [19].

We first evaluate each algorithm’s performance for each cul-
tural community. Figure 3 shows Spearman’s correlation for
all three groups’ datasets and all three algorithms. As ex-
pected, ENS performs best on all three datasets. However, for
the domain-specific dataset, MW bests ESA for each group,
contradicting years of SR results on datasets such as Word-
Sim353. The differences in performance for ESA and MW
may arise from the particular knowledge domains we con-
sider. MW relies on link overlap, and concepts within the
same domain likely contain links that overlap more often, cre-
ating a stronger signal for MW. In addition, ESA relies on
textual search and may perform better for single words than
the specific multi-word phrases that commonly appear in our
dataset.

The differences in relative SR accuracy between Word-
Sim353, a general knowledge gold standard, and our domain-
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focused gold standard show that an algorithm that performs
well on one gold standard need not perform well on others.
They also point to the “community matters” hypothesis for al-
gorithmic performance; MW may be more suitable for an au-
dience of historians, biologists, or psychologists than in other
settings.

To provide deeper insight into the algorithmic “community
matters” hypothesis, we next focus on algorithmic pefor-
mance for domain specific questions, where we saw the
largest community differences in previous analyses. As with
previous analyses, each algorithm is trained and tested on one
community (e.g. historians) by performing cross-validation
against that community’s gold standard. Figure 4 shows
the results for the 150 domain-specific questions, broken out
by community. The domain-specific results for the three
top-level communities (scholars, scholar-experts, and turk-
ers) show the same trend as all concepts (Figure 3), but with
larger effects. The three scholar-expert sub-communities ex-
hibit distinctive SR performance on the 50 concept pairs in
their domain. All three algorithms perform roughly the same
for historians, while ESA slightly outperforms MW for bi-
ologists. Psychologists emerge as a clear outlier, with ENS
performing substantially worse than both MW and ENS.

The poor performance of ENS for psychologists is statisti-
cally significant, unique, and supports the “community mat-
ters’ algorithmic hypothesis. The Spearman’s correlation for
ENS on the 50 psychology pairs is only 0.22 when trained
and tested on the psychology dataset, compared to 0.67 for
the turker dataset.10 A standard two-sided confidence interval
on this correlation falls just short of significant (p = 0.06).
However, a non-parametric statistical evaluation that uses the
Wilcoxon signed-rank test to leverage the paired structure
of the observation finds them to be very significant (p =
1 × 10−5, details described in the Appendix). We next in-
vestigate this difference more deeply.

To understand why ENS performed poorly for psychologists,
we next consider whether any consistents patterns arise in
SR estimates for psychologists. The poor performance pri-
marily arises from highly related concepts that are predicted
as moderately related or unrelated. Figure 5 visualizes the
five psychology concept pairs most responsible for the de-
cline in algorithmic performance differences between the two
communities. The x axis shows actual human relatedness re-
sponses (right is more related in the gold standard). The y
axis shows algorithmic predicted relatedness (up is predicted
to be more related). Arrows and colors visualize the change
in actual and predicted relatedness from turkers (blue) to psy-
chologists (red). The green diagonal line x = y shows accurate
predictions (predicted rank = actual rank).

To provide intuition for the visualization, we describe the
“health psychology”, “child development” pair appearing in
the upper left. First, consider the blue starting point of the
line. The turker gold standard ranked the pair as the 29th
most similar (X axis). The turker-trained algorithm predicted

10The Spearman’s correlation of 0.71 in Figure 4 is calculated on all
150 pairs. When pruning to the 50 psychology pairs the correlation
drops slightly to 0.67.

Figure 4. The correlation between algorithmic estimates and gold stan-
dard datasets for each of the gold standards and algorithms on the
domain-specific questions.

the concept pair would be the 26th most similar pair of the
50 psychology terms (Y axis). Since this is a relatively ac-
curate ranking (26 is close to 29), the blue starting point ap-
pears near the green line. The “red shift” to the upper left
indicates that performance on the psychology gold standard
worsened. Psychologists assessed it as the 37th most related
pair (relatively unrelated), while the algorithm trained on the
psychology gold standard yielded a predicted rank of 8 (quite
related)/

Several patterns emerge from Figure 5. First, all five concept
pairs show a decrease in performance for psychologists (i.e.
a shift away from the green diagonal line). This is by design;
this visualization includes the pairs most responsible for the
decline in psychology performance. Second, all shifts except
for “health psychology” / “child development” arise from an
increase in actual gold standard relatedness coupled with a
decrease in predicted relatedness. Third, many of the pairs
include a relatively broad psychology concept (“cognition”,
“language”, “neuroscience”, “child development”, “research
methods”).

These final two observations — 1) that broad concepts ac-
count for the most egregious scholar-expert errors, and 2) that
algorithms typically under-predict the relatedness of broad
concepts for scholar experts — are consistent with our ear-
lier findings. Recall that broad concepts accounted for the
largest community differences in human SR estimates (Ta-
ble 3); scholar experts viewed broad concepts as more related
than other cultural communities. Our findings also suggest
that the knowledge encoded within Wikipedia, and the algo-
rithms derived from this knowledge, may more closely re-
flect the perspectives of turkers than domain experts. If true,
Wikipedia-based algorithms trained on data from turkers will
not only perform differently for domain experts — they will
likely perform worse. This may introduce a dangerous sce-
nario in which an algorithm developer targeting domain ex-
perts may over-estimate the algorithm’s performance if they
test (incorrectly) on a turker gold-standard.
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Figure 5. The five biggest shifts in ENS’s predicted relatedness (X axis)
and actual relatedness (Y axis) between turkers and psychologists. Ar-
rows show change from turkers (blue) to psychologists (red). The green
diagonal line shows accurate predictions (predicted rank = actual rank).

To summarize our findings for RQ2, we find support for the
algorithmic “communities matters” precept in contexts when
domain expertise is relevant. Algorithmic performance differ-
ences arise from differences in both community judgements
and algorithmic estimates, and performance declines most
when these two shifts occur in opposite directions. It seems
that as with human assessments, broad abstract concepts lead
to the largest community differences in algorithmic SR esti-
mates. Our findings also may suggest that sophisticated algo-
rithms with many tunable parameters (such as ENS) are more
susceptible to “community confusion” than relatively simple
algorithms with no tunable parameters.

DISCUSSION
This paper investigates the relationship between cultural com-
munities, gold standards, and the algorithms that rely on
them. Using 7,921 judgements from 111 subjects, we exam-
ine how SR judgements differ across three cultural commu-
nities: Mechanical Turk workers, scholars, and scholars who
are experts in the field of an SR judgement. We show that dif-
ferent cultural communities can produce different gold stan-
dard judgements, and these differences can shape algorithmic
accuracy.

The results reported in this paper have important implications
for the use of Mechanical Turk in the development of gold
standards. Specifically, they show that while workers can pro-
duce widely applicable gold standards for some knowledge
tasks (i.e. the “turkers for all” precept), there are many others
for which this is not the case (i.e. the ”community matters”
precept).

The work of Clark [9] provides a useful lens to help distin-
guish these two types of tasks. We saw that the “turkers for
all” precept tended to hold when only considering general
knowledge concept pairs, but broke down when the concept
pairs were more domain-specific. Clark’s notion of shared

expertise helps explain this difference. For general knowl-
edge concept pairs like those in WordSim353 (e.g. “war” and
“troops”), the concepts and their predominant relationships
can be understood to be defined similarly in a wide range of
cultural communities’ shared expertise. Given that SR has
been defined as the number and strength of relationships be-
tween two concepts [20], broadly shared knowledge may al-
low communities that have little overlap in member — e.g.
turkers and scholars — to provide similar SR ratings of gen-
eral knowledge concept pairs. In this light, our findings sup-
port the use for Mechanical Turk in generating gold standards
for knowledge tasks that involve widely-shared and agreed-
upon knowledge.

However, our work also suggests that if a knowledge task
does not satisfy the above condition — if it requires knowl-
edge that may differ across cultural communities’ — the use
of AMT in gold standard development is problematic. We
saw this occur with domain-specific concept pairs. The con-
cepts included in these pairs are likely understood differently
across the shared expertise of different professional cultural
communities (i.e. domain experts vs. turkers). As a result,
the SR estimates from these two groups differed significantly.

Mechanical Turk has generated gold standards for an enor-
mous variety of knowledge tasks, some of which likely rely
exclusively on general knowledge and others of which likely
rely heavily on knowledge that varies across cultural commu-
nities. For example, simple information extraction tasks —
e.g. validating a mailing address that was extracted from a
web page — seem to fall in the former category. The knowl-
edge required to validate a mailing address falls in many cul-
tural communities’ shared expertise (though certainly not all).
On the other hand, other types of tasks like semantic related-
ness result in dubious data and unreliable assessments of al-
gorithmic performance. For example, image tagging and sen-
timent analysis may also represent cultural-specific knowl-
edge tasks; previous research has pointed to cultural differ-
ences as a limiting factor in the accuracy of sentiment analysis
[2] and it has shown that image tags can vary across national
cultures [11].

The implications of this work extend beyond the use of AMT
in gold standard development to problematizing the use of
gold standards as a whole. While AMT has become the
de facto gold standard generation engine in many areas of
computer science, our work suggests that many of the same
concerns with regard to shared knowledge may apply to the
development of gold standards using other means (e.g. un-
dergraduate students). Researchers and practitioners should
carefully consider their specific knowledge tasks and the au-
dience of their research and systems when deciding how to
develop gold standards. Failing to do so can lead to misun-
derstandings of algorithmic performance, as we saw when we
observed that a single SR algorithm trained on gold standards
from two different communities can achieve dramatically dif-
ferent performance. For psychology SR questions, for exam-
ple, state of the art algorithms are three times better at pre-
dicting turker assessments than psychologists for the same
concept pairs.
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Our findings also have specific implications for the way in
which SR algorithms are evaluated and for the entire task of
semantic relatedness estimation, a task that has spawned an
enormous literature. Namely, our results suggest that SR al-
gorithms should no longer be evaluated in terms of how well
they predict contextless SR values, but rather on how well
they predict SR values for a given community. In other words,
the findings above imply that we need to move from a seman-
tic relatedness defined by SR(a, b) to one that is defined by
SR(a, b, community).

To support this change, we are publicly releasing our dataset
of 7,921 estimates split across three communities and two
types of knowledge (general and domain-specific)11. Using
this dataset, the many researchers working to develop better
SR algorithms can understand the performance of their algo-
rithms according to each of the five conditions we consider
in our experiment. Instead of reporting, for instance, “our
algorithm’s output had an ρs = 0.63 correlation with human
judgements”, SR researchers will be able to report “our algo-
rithm’s output had an ρs = 0.52 with turkers’ judgements on
general knowledge concept pairs, an ρs = 0.65 with scholar-
expert’s judgements” (and so on).

Finally, our work also provides insight into the underlying
processes by which people make SR estimates. At a high-
level, we have seen that differences in SR estimates can be
understood through the lens of Clark’s definition of cultural
communities as the result of one group’s shared knowledge
that is lacked by other groups. However, Clark’s definition is
part of a theory of language as joint action, and future work
should investigate whether a subject’s beliefs about how their
judgements will be used affect their responses. For instance,
if a participant in our study assumed that her SR judgements
would be seen by a very broad audience, there might be a
tendency to “regress to the mean” in her assessments (e.g.
ignoring a relationship between two concepts well-known in
her field, but not widely). On the other hand, if the participant
assumed that the judgements were only going to be seen or
used by people in her direct academic field, it could have an
opposite effect. We are currently working to develop a survey
that uses prompts to test this hypothesis.

Our findings suggest a variety of additional new directions.
Examining communities beyond turkers and scholars would
enrich our understanding of the relationship between commu-
nity membership and gold standard creation. Would we see
the same effects across age groups? National cultures? Per-
sonality types? Home towns? Future research should also
study whether our findings hold for other knowledge tasks
beyond SR (e.g. sentiment analysis, image labeling).

APPENDIX: COMPARING SR ALGORITHMS
When analyzing RQ2, we wanted to know whether the large
difference in Spearman’s correlation for the ensemble SR al-
gorithm train on turkers (ρs = 0.67) and psychologists (ρs =
0.22) was significant. A traditional two-sided confidence in-
terval on the pair of correlations finds them to be just short of
significant. However, this statistical test incorrectly assumes

11http://shilad.com/pluraSR200.html

that the observations across samples are independent. In fact,
the turker and psychology samples have a single observation
for each of the 50 concept pairs.

To increase statistical power, we instead use a statistical pro-
cedure that leverages the paired structure of the observations.
For each concept pair (e.g. “cognition”, “language”) we com-
puted the rank error for both turkers (for the example, pre-
dicted rank = 13, actual rank = 36, rank error = 23) and psy-
chologists (for the example, predicted rank = 1, actual rank =
48, rank error = 47). We then compute the difference in rank
errors (23 - 47 = -24). If the errors are negative, the turker pre-
diction was closer. If they are positive, the psychologist pre-
diction was closer Of the 50 concept pairs, the turker-trained
SR algorithm performed best on 36 (72%), the psychologist-
trained SR aglorithm performed best on 11 (22%), and they
tied on the remaining 3 (6%).

Finally, we performed a Wilcoxon signed rank test on the dif-
ference in rank errors to determine whether it statistically fa-
vored turkers or psychologists. A Wilcoxon test is appropri-
ate because, like Spearman’s correlation, it is non-parametric
and tells us whether the observed differences differ signifi-
cantly from zero. The p-value reported by the Wilcoxon test
for these differences was p = 1× 10−5.

ACKNOWLEDGMENTS
This research has been generously supported by Macalester
College and the National Science Foundation (grants IIS-
0964697 and IIS-0808692). We would also like to thank the
Macademia users and Mechanical Turk workers who com-
pleted our online survey. This research would not be possible
without their human SR judgements.

REFERENCES
1. Babbie, E. R., et al. Survey research methods.

Wadsworth Belmont, CA, 1990.

2. Balahur, A., Steinberger, R., Kabadjov, M., Zavarella,
V., Van Der Goot, E., Halkia, M., Pouliquen, B., and
Belyaeva, J. Sentiment analysis in the news. arXiv
preprint arXiv:1309.6202 (2013).

3. Bao, P., Hecht, B., Carton, S., Quaderi, M., Horn, M.,
and Gergle, D. Omnipedia: Bridging the wikipedia
language gap. In CHI ’12 (2012).

4. Bergstrom, T., and Karahalios, K. Conversation clusters:
grouping conversation topics through human-computer
dialog. In CHI ’09 (Boston, MA, 2009), 2349–2352.

5. Bloodgood, M., and Callison-Burch, C. Using
mechanical turk to build machine translation evaluation
sets. In Proceedings of the NAACL HLT 2010 Workshop
on Creating Speech and Language Data with Amazon’s
Mechanical Turk (2010).

6. Budanitsky, A., and Hirst, G. Evaluating WordNet-based
measures of lexical semantic relatedness. Computational
Linguistics 32, 1 (2006), 13–47.

7. Buhrmester, M., Kwang, T., and Gosling, S. D.
Amazon’s mechanical turk a new source of inexpensive,

11



yet high-quality, data? Perspectives on Psychological
Science 6, 1 (Jan. 2011), 3–5.

8. Callison-Burch, C., and Dredze, M. Creating speech and
language data with amazon’s mechanical turk. In
Proceedings of the NAACL HLT 2010 Workshop on
Creating Speech and Language Data with Amazon’s
Mechanical Turk, Association for Computational
Linguistics (2010), 1–12.

9. Clark, H. H. Using Language. Cambridge University
Press, May 1996.

10. Dong, W., and Fu, W.-T. Cultural difference in image
tagging. In CHI ’10 (Atlanta, Georgia, USA, 2010), 981.

11. Dong, Z., Shi, C., Sen, S., Terveen, L., and Riedl, J. War
versus inspirational in forrest gump: Cultural effects in
tagging communities. In ICWSM ’12 (May 2012).

12. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E.,
Solan, Z., Wolfman, G., and Ruppin, E. Placing search
in context: The concept revisited. ACM Transactions on
Information Systems 20, 1 (2002), 116–131.

13. Freitas, A., Oliveira, J. G., O’Riain, S., da Silva, J. C.,
and Curry, E. Querying linked data graphs using
semantic relatedness: A vocabulary independent
approach. Data & Knowledge Engineering 88, 0 (2013),
126 – 141.

14. Gabrilovich, E., and Markovitch, S. Computing
semantic relatedness using wikipedia-based explicit
semantic analysis. In IJCAI ’07 (Hyberabad, India,
2007).

15. Gergle, D., Kraut, R. E., and Fussell, S. R. Action as
language in a shared visual space. In Proceedings of the
2004 ACM Conference on Computer Supported
Cooperative Work, CSCW ’04, ACM (New York, NY,
USA, 2004), 487–496.

16. Gergle, D., Millen, D. R., Kraut, R. E., and Fussell, S. R.
Persistence matters: Making the most of chat in
tightly-coupled work. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’04, ACM (New York, NY, USA, 2004), 431–438.

17. Grieser, K., Baldwin, T., Bohnert, F., and Sonenberg, L.
Using ontological and document similarity to estimate
museum exhibit relatedness. 10:110:20. Cited by 0013.

18. Halawi, G., Dror, G., Gabrilovich, E., and Koren, Y.
Large-scale learning of word relatedness with
constraints. In KDD ’12, ACM (New York, NY, USA,
2012), 14061414.

19. Hecht, B., Carton, S. H., Quaderi, M., Schöning, J.,
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