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Abstract 
Recent studies have found that people interpret emoji charac-
ters inconsistently, creating significant potential for miscom-
munication. However, this research examined emoji in isola-
tion, without consideration of any surrounding text. Prior 
work has hypothesized that examining emoji in their natural 
textual contexts would substantially reduce the observed po-
tential for miscommunication. To investigate this hypothesis, 
we carried out a controlled study with 2,482 participants who 
interpreted emoji both in isolation and in multiple textual 
contexts. After comparing the variability of emoji interpreta-
tion in each condition, we found that our results do not sup-
port the hypothesis in prior work: when emoji are interpreted 
in textual contexts, the potential for miscommunication ap-
pears to be roughly the same. We also identify directions for 
future research to better understand the interplay between 
emoji and textual context. 

 Introduction   
Emoji characters are extremely popular on the Web and in 
text-based communication (Dimson 2015; Medlock and 
McCulloch 2016). The ubiquity of emoji is in part enabled 
by the Unicode Consortium, which provides a worldwide 
text encoding standard for emoji characters just as it does 
for more traditional characters (e.g., letters, numbers, Chi-
nese characters). The Unicode standard specifies both (1) a 
Unicode character for each emoji that identifies it across 
platforms and (2) a name that describes—but not pre-
scribes—its appearance. The appearance of individual emoji 
is specified by a given font, just as for text characters. 
 However, there is an important difference between emoji 
characters and more traditional characters: emoji fonts are 
largely specific to individual technological platforms, so a 
given emoji character’s appearance may vary extensively 
across platforms. For example, the Unicode character with 
code U+1F606 and name “smiling face with open mouth 
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and tightly-closed eyes” renders as this pictograph  on 
Microsoft Windows devices but as this pictograph  on 
Apple devices. Emojipedia currently tracks 19 platforms 
with their own emoji fonts (“Emojipedia” 2017). Moreover, 
platforms update their emoji fonts just as they update their 
operating systems and, as such, emoji fonts are actually plat-
form-version specific, not just platform-specific. For in-
stance, this pictograph  shows how emoji character 
U+1F606 was rendered in previous Microsoft implementa-
tions of the Unicode standard. This means, for example, that 
the emoji rendering a Twitter user chooses and sees when 
they compose a tweet (on one version of a platform) may 
very likely not be the emoji rendering many followers see 
when they read the tweet (as they may be using different 
platforms or versions). 
 Researchers have shown that this across-platform (and 
across-version) diversity, combined with varying interpreta-
tions of even the exact same pictograph, raises the risk of 
miscommunication when using emoji. Indeed, examining 
some of the most popular anthropomorphic (i.e., human-
looking) emoji characters, Miller et al. (2016) and Tigwell 
and Flatla (2016) found that the perceived sentiment of a 
given emoji character varies extensively, even among peo-
ple using the same platform. Psycholinguistic theory (Clark 
1996) suggests that in order to avoid miscommunication in-
cidents, people must interpret emoji characters in their ex-
changes in the same way (and they must know that they are 
interpreting them the same way). The research of Miller et 
al. and Tigwell and Flatla suggests that these interpretation 
pre-conditions may break down in certain cases. 
 There is, however, an important caveat to prior studies of 
miscommunication with emoji: they focused on people’s in-
terpretations of standalone emoji. Although emoji are some-
times used in isolation, they are most often accompanied by 
surrounding text (Medlock and McCulloch 2016). Indeed, 

 



Miller et al. (2016) recommended considering emoji in the 
context of surrounding text as a key direction of future work. 
In particular, they hypothesized that at least some of the po-
tential for miscommunication that they observed would dis-
appear in this more ecologically valid setting. 
 In this paper, we seek to test Miller et al.’s hypothesis di-
rectly. Specifically, we ask:  

RQ: Does the presence of text reduce inconsistencies 
in how emoji are interpreted, and thus the potential for 
miscommunication? 

To address this question, we adopt an approach similar to 
that employed by Miller et al. in which we use an online 
survey to solicit people’s interpretations of emoji. Emoji 
renderings were presented to participants either in isolation 
(standalone) or embedded in a textual context (in-context), 
and participants judged the sentiment expressed by each 
emoji rendering. Textual contexts were gathered by ran-
domly selecting tweets containing the corresponding emoji 
character. For each condition, we computed how much peo-
ple varied in their interpretations, estimating the potential 
for miscommunication of each emoji when it is presented 
with textual context and when it is presented without it. 
 Our results tell a clear story: the hypothesis of Miller et 
al. is not supported. In general, emoji are not significantly 
less ambiguous when interpreted in context than when inter-
preted standalone. In addition, all such differences are small 
relative to a baseline amount of ambiguity; roughly speak-
ing, they are “just noise”. Finally, our results do not trend in 
a particular direction: while some emoji are less ambiguous 
in context, others actually are more ambiguous in context.  
 We next discuss related work. Designing a robust experi-
ment that controls for variation in types of textual contexts 
among other concerns was an involved process, and we out-
line this design following related work. We then discuss our 
statistical methods, followed by our results. We close by 
highlighting the implications of our results more broadly. 

Related Work 
We first give an overview of relevant psycholinguistic the-
ory and how it relates to studying emoji in textual context. 
We next review work that has built emoji semantic and sen-
timent inventories and research that has more explicitly ex-
amined the consistency of emoji interpretation. 

Linguistic Theory 
Emoji serve a paralinguistic function in digital written text, 
substituting for nonverbal cues such as facial displays and 
hand gestures in face-to-face communication (Clark 1996; 
Medlock and McCulloch 2016; Pavalanathan and Eisenstein 
2016; Walther and D’Addario 2001). More specifically, 

emoji usage can be understood as “visible acts of meaning” 
as defined by Bavelas and Chovil (2000): 

“(a) [Visible acts of meaning] are sensitive to a sender-
receiver relationship in that they are less likely to occur 
when an addressee will not see them, (b) they are ana-
logically encoded symbols (c) their meaning can be ex-
plicated or demonstrated in context, and (d) they are 
fully integrated with the accompanying words.” 

As part of their “Integrated Message Model”, Bavelas and 
Chovil (2000) argue that audible and visible communicative 
acts (i.e., visible acts of meaning) should be considered as a 
unified whole, whereas previously these channels were of-
ten studied independently. By examining text and emoji to-
gether, this paper extends research on emoji-related commu-
nication towards this more “integrated” perspective. 

Large-scale Emoji “Inventories”  
A few recent research projects have sought to build “inven-
tories” of meanings or senses associated with specific emoji 
characters. For instance, Novak et al. (2015) developed the 
first emoji sentiment lexicon, representing the sentiment of 
each emoji as the distribution of the sentiment of tweets in 
which it appeared. This work shows that emoji may be used 
in different ways and take on different meanings, but it does 
not address whether people agree on the meaning of an 
emoji in a given use case. Wijeratne et al. (2016) provide a 
similar resource to Novak et al. but for semantics. Wijeratne 
et al.’s emoji “dictionary” aims to help disambiguate emoji 
in context. Our results, however, suggest that doing so may 
be difficult, since people often do not agree on the meaning 
of specific emoji and specific emoji-bearing text snippets. 

Consistency of Emoji Interpretation 
Prior to emoji, Walther and D’Addario (2001) studied am-
biguity of the emoticons “:-)”, “:-(“ and “;-)” and found that 
participants varied little in their sentiment interpretations. 
Recent research, however, has shown this is not the case for 
emoji. For instance, Miller et al. (2016) used a psycholin-
guistic lens to examine how much people vary in their inter-
pretations of emoji and found that this variability can be ex-
tensive both in terms of sentiment and semantics. Tigwell 
and Flatla (2016) extended Miller et al.’s research to con-
sider sentiment along two dimensions instead of one, find-
ing similar results. 
 Miller et al. (2016) argued that the variance in emoji in-
terpretation that they observed may be detrimental to the 
successful use of emoji in communication. Since two people 
must have the same interpretation of a signal (i.e., commu-
nicative act) in order for it to have been successful in an ex-
change (Clark 1996), when an addressee’s interpretation dif-
fers from a sender’s intended meaning, a misconstrual or 



 

 

miscommunication occurs. Miller et al. encode this psycho-
linguistic understanding of interpretation variability in their 
core metric – the emoji misconstrual score – and we use the 
same metric here. 
 More generally, both Miller et al. and Tigwell and Flatla 
studied interpretation of standalone emoji. But, as discussed 
above, the most common use case involves emoji characters 
embedded in surrounding text (Medlock and McCulloch 
2016). Thus, our present study seeks to extend the literature 
on emoji interpretation and its relationship to emoji-related 
miscommunication by studying emoji in textual context. 

Survey Design 
To address our research question, we conducted a survey 
that solicited over two thousand people’s interpretations of 
emoji in isolation and in context. Although we borrow the 
basics of our experimental design from Miller et al. (2016), 
the consideration of textual context required the addition of 
several complex components to our survey and analytical 
framework. In this section, we provide an overview of our 
survey design, and in the next section we highlight our sta-
tistical approach. We note that both sections feature rather 
detailed description of methods; this is to enable our work 
to be replicable. We also note that while Miller et al. exam-
ined both sentiment and semantic ambiguity, we focus on 
sentiment. As discussed below, considering both would 
have resulted in insufficient experimental power and, as 
noted by Miller et al. (2016), semantic differences have 
more limited interpretability. 
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Emoji and Platforms 
Prior work (Miller et al. 2016) revealed variability in how 
people interpret emoji, identifying some as particularly sub-
ject to miscommunication. For our study, we selected the 10 
emoji from that study that had the most potential for senti-
ment ambiguity. These “worst offenders” (see Table 1) are 
among the most frequently-used anthropomorphic emoji 
(Miller et al. 2016). Thus, by studying these ten emoji in 
context, we can determine whether the presence of sur-
rounding text mitigates the problem where it is both impact-
ful and most acute. 
 We considered the same five platforms as Miller et al. 
(Apple, Google, LG, Microsoft, and Samsung), as well as 
Twitter’s emoji renderings (or “Twemoji”) because we used 
Twitter as our source of text containing emoji (see the fol-
lowing sub-section). Importantly, all of these platforms have 
updated at least some of their emoji renderings since Miller 
et al. performed their work. Of the five platforms’ render-
ings of our 10 emoji Unicode characters (50 renderings to-
tal), 30 have been updated1 (all 10 of Apple’s renderings, 6 
of Google’s, 2 of LG’s, all 10 of Microsoft’s, and 2 of Sam-
sung’s). Some of the updates are relatively minor, for exam-
ple resolution changes (particularly in Apple’s case) and 
changes to adhere better to emerging emoji norms (e.g., 
LG’s updates to match emoji skin tone norms). However, 
other updates involve substantial modifications in rendering 
appearance and effectively result in new implementations of 
the emoji characters (e.g., Microsoft’s changes). 
 To afford comparison to Miller et al.’s work while also 
ensuring that our results reflect the emoji state-of-the-art, we 

  UNICODE   NAME Previous 
Apple 

Current 
Apple 

Previous 
Google 

Current 
Google 

Previous 
LG 

Current 
LG 

Previous 
Microsoft 

Current 
Microsoft 

Previous 
Samsung 

Current 
Samsung Twitter 

  1F606   SMILING FACE WITH OPEN MOUTH AND  
  TIGHTLY-CLOSED EYES           

  1F601   GRINNING FACE WITH SMILING EYES 
          

  1F64C   PERSON RAISING BOTH HANDS IN  
  CELEBRATION          

  1F605   SMILING FACE WITH OPEN MOUTH AND  
  COLD SWEAT          

  1F60C   RELIEVED FACE 
         

  1F648   SEE-NO-EVIL MONKEY 
        

  1F64F   PERSON WITH FOLDED HANDS 
         

  1F60F   SMIRKING FACE 
        

  1F631   FACE SCREAMING IN FEAR 
         

  1F602   FACE WITH TEARS OF JOY 
         

Table 1. The 10 emoji characters (Unicode and Name) in our study and their associated renderings for the six platforms in our study. The 
“Previous” column for each of the platforms shows the renderings at the time of Miller et al.’s (2016) work and the “Current” column 
shows the current renderings (as of Fall 2016). Merged cells indicate that no changes were made to a rendering. A white background 

indicates inclusion in our study (all current versions and previous versions we deem to be substantively different from the updated version, 
77 renderings total). A gray background indicates exclusion (previous and current versions deemed not substantively different). 



included in our study all current renderings of our 10 emoji 
characters, as well as all previous renderings whose current 
renderings substantively changed relative to the prior ren-
derings. We determined whether a rendering underwent a 
substantive change by having two coders independently as-
sess each update as substantive or not. A substantive change 
was defined as having nontrivial chance of affecting one’s 
sentiment interpretation. The coders achieved 87% agree-
ment (26/30 renderings), and resolved differences jointly. In 
the end, 17 renderings were determined to have substan-
tively changed. Table 1 shows the full set of renderings that 
we considered; those with white backgrounds (77 total) 
were included in the study. 

Building a Corpus of Emoji Textual Contexts 
We chose Twitter as a corpus for text containing emoji (i.e. 
emoji-bearing tweets) for two key reasons. First, Twitter is 
a readily available source of communication that uses emoji. 
Second, most tweets are public and thus more likely to be 
interpretable without additional hidden interpersonal con-
text. This would not be the case, for example,  in a corpus of 
direct sender-receiver mobile text messages as such mes-
sages are often interpreted using established norms and 
shared knowledge between the two parties (Clark 1996; 
Cramer, de Juan, and Tetreault 2016; Kelly and Watts 
2015), a point to which we return later. To maximize the 
likelihood that any participant would be able to interpret the 
tweets in our study (i.e., minimize the need for exogenous 
context), we also filtered tweets in the following ways: 

• Tweets had to be written in English so that they would 
be readable by our participants. 

• Tweets had to be original tweets, not retweets, so they 
appeared in their original context. 

• Tweets could not contain user mentions, to reduce the 
chance that they were intended for a specific individual. 

• Tweets could not contain hashtags, to reduce the chance 
that they were intended for a particular sub-community. 

• Tweets could not be from a “verified” account (i.e., ce-
lebrity or public figure), to reduce the chance that the 
content (and interpretation) depended on context from 
popular culture, current events, and other exogenous in-
formation. 

• Tweets could not contain URLs or attached media (e.g., 
photos, video), to reduce the chance that interpretation 
depends on external content rather than just the sur-
rounding text. 

We used the Twitter Streaming API to randomly collect ap-
proximately 64 million public tweets between September 27 
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and October 15, 2016. We then filtered these tweets accord-
ing to the above criteria, leaving approximately 2 million 
tweets to select from for our study.  
 To ensure that our findings about emoji in context are not 
tweet-specific, we randomly sampled 20 unique tweets con-
taining each emoji character (10x20 = 200 tweets total) from 
our filtered tweet dataset. When a Twitter user crafts a tweet 
on a specific platform (i.e. the tweet’s “source” platform), 
the user is working with emoji as specifically rendered on 
that platform. Therefore, to minimize biased use cases of 
each emoji that may arise from differences between source 
platform renderings, we stratified the sampling of 20 tweets 
(for each character) to be from four identifiable rendering-
specific sources. Specifically, we randomly sampled 5 
tweets from each of the following2: (1) Twitter Web Client 
(originate with Twitter’s emoji renderings, or Twemoji), (2) 
Twitter for iPhone, iPad, or Mac (originate with Apple’s 
renderings), (3) Twitter for Android (cannot be sure of the 
origin of emoji renderings because Android is fragmented 
by manufacturer, and many use their own emoji fonts), and 
(4) Twitter for Windows Phone (originate with Microsoft’s 
renderings). Finally, we also made sure that each tweet con-
tained only a single emoji. 
 An emoji-bearing tweet is often read on platforms that 
have different emoji renderings than those from platform on 
which the tweet was authored. For example, this tweet from 
our dataset was shared from an Apple device: 

Will be at work in the a.m      (Apple) 

But this same tweet is rendered differently for users of other 
platforms: 

Will be at work in the a.m      (Google) 
Will be at work in the a.m      (LG) 
Will be at work in the a.m      (Microsoft) 
Will be at work in the a.m      (Samsung) 
Will be at work in the a.m      (Twitter) 

This example demonstrates emoji communication across 
platforms, in which people see different renderings of the 
same emoji character in the same tweet. Even people using 
the same platform but different versions of that platform 
may see different renderings of the same emoji: 

Will be at work in the a.m      (Current Microsoft) 
Will be at work in the a.m      (Previous Microsoft) 

In other words, multiple versions of a given platform’s ren-
derings essentially creates another across-platform dimen-
sion.  
 To gain a cross-platform (and cross-version) understand-
ing of the potential for miscommunication using emoji with 

Twitter for Android), so we fulfilled this deficit by pulling tweets that sat-
isfied the same criteria we outlined from a dataset that was collected using 
the Twitter API between August and September 2015. 



 

 

text (as Miller et al. did on a standalone basis), we had to 
consider each sample tweet as it would be rendered on dif-
ferent platforms (and platform versions). As such, we repli-
cated each of our 200 tweets for each rendering of the emoji 
they contained, as we did for the example above. In total, we 
gathered interpretations for 1,540 rendering-specific tweets 
(77 total emoji renderings x 20 tweets per rendering).  

Experiment Design 
We designed our experiment to capture the two types of data 
needed to make the comparison central to our research ques-
tion: (1) interpretations of standalone emoji (replicating the 
work of Miller et al.) and (2) interpretations of emoji in con-
text. We did this using a between-subjects experiment de-
sign; participants were randomly assigned to the standalone 
or context condition until the quota for each was met. 
 For the standalone emoji condition, we used the same sur-
vey design as Miller et al., except we collected only senti-
ment interpretations. We focused on sentiment interpreta-
tion because the sentiment rating scale lets us precisely com-
pare interpretations, and differences between sentiment in-
terpretations are easier to understand than open-response se-
mantic interpretation differences. Importantly, considering 
semantics also would have affected our ability to recruit a 
sufficient number of participants, as the semantic compo-
nent of the Miller et al. survey design requires a great deal 
more participant effort. 
 Participants in the standalone condition were randomly 
assigned 20 emoji renderings.  Participants in the in-context 
condition were randomly assigned 20 of the emoji-contain-
ing tweets. For each tweet, we randomly showed one ren-
dering of the emoji to display (simulating viewing the tweet 
on that platform-version). In both conditions, participants 
were instructed to judge the sentiment expressed by each 
emoji (standalone or in context) on an ordinal scale from 
Strongly Negative (-5) to Strongly Positive (5), mirroring 
the scale used in prior work (Miller et al. 2016; Taboada et 
al. 2011). For the standalone condition, we used the same 
intra-rater quality control as Miller et al. by having each par-
ticipant interpret Apple’s heart emoji ( , Unicode U+2764) 
both before and after their random sample of 20 emoji. For 
the in context condition, we used “love ” to show before 
and after the sample of tweets.  

Participants 
We recruited participants via Amazon Mechanical Turk. 
Since geography and culture may influence interpretation 
(Barbieri et al. 2016; Park, Baek, and Cha 2014; Park et al. 
2013), we recruited only participants from the United States 
                                                
3 We exceeded this quota because it was met after other participants had 
already started taking the survey. 
4 We report two minimums because the first is due to a survey flaw: one 
single tweet for one single rendering was not recording interpretations for 

(limiting our findings to this cultural context); we also re-
quired participants to have 97% of their work approved with 
at least 1,000 approved tasks completed. We estimated it 
would take participants roughly 10 seconds per interpreta-
tion. With each participant providing 22 interpretations (ran-
dom sample of 20 plus the heart emoji twice), we compen-
sated all participants $0.50 for completing the survey (pro-
rating from a wage of $8 per hour and rounding up).  
 We established quotas to gather sufficient power for our 
statistical comparisons (see below) and to leave sufficient 
buffer for participants who might fail the intra-rater check. 
We aimed for 50 standalone evaluations of each of our 77 
emoji renderings, and thus targeted 210 participants for the 
standalone condition and acquired 2383. We aimed for 30 
interpretations for each of our 1,540 rendering-specific 
tweets, thus targeted 2,500 participants and acquired 2,356. 
 Following Miller et al., we used intra-rater reliability re-
sults as a filter: we excluded participants whose two ratings 
of the Apple heart emoji differed by more than 1.0 on the 
sentiment scale. This eliminated 4% of the initial participant 
pool, leaving 235 participants in the standalone condition, 
and 2,247 in the context condition. Of these 2,482 partici-
pants, 1,207 identified as male, 1,269 as female, and 6 as a 
different gender. The median age was 33 (SD = 11; min = 
18; max = 79). For emoji usage, 92 said they “Never” use 
emoji, 346 “Rarely,” 882 “Sometimes,” 737 “Frequently,” 
and 425 “Very Frequently.” 37% of participants use Apple, 
31% use Samsung, 9.5% use LG, 3.6% use Google, 1.1% 
use Microsoft, 12.7% use other platforms, and 4.5% do not 
have a smartphone. 
    The participants from the standalone condition provided 
a total of 4,700 interpretations, with a median of 61interpre-
tations per rendering (min = 58; max = 64). The participants 
from the context condition provided 44,903 interpretations 
total, with a median of 30 interpretations per rendering 
(mins4 = 12,19; max = 35). 

Analytical Methods 
To measure the potential for miscommunication associated 
with a particular emoji in and out of context, we used the 
same metric as Miller et al (2016): average sentiment mis-
construal score, the average distance between all pairs of 
participant sentiment ratings. The motivation is that pair-
wise comparisons essentially simulate communication be-
tween two people, so the greater the average distance be-
tween interpretations the more likely people are to miscom-
municate. Another benefit is that this metric can be com-
puted for a single rendering or for two different renderings 

about half of the survey period, until we discovered and corrected the error 
to start collecting data. The next least amount of interpretations per context 
was 19. 



of an emoji character, thus simulating both communication 
within and across platforms. By computing all pairwise dis-
tances between people’s interpretations, we simulated the 
full communication space within and across platforms.  
 We aimed to compare the variability of interpretation for 
when each emoji was presented standalone versus in con-
text, and for both within- and across-platform communica-
tion. We thus had to compute four (2x2) distinct sentiment 
misconstrual scores for each emoji character in our study: 

• Within-Standalone: within-platform without textual 
context 
• Within-Context: within-platform with textual context 
• Across-Standalone: across-platforms without textual 
context 
• Across-Context: across-platforms with textual context. 

 Within- and across-platform computation directly follows 
methods by Miller et al. (2016). For within-platform com-
putations (with or without textual context), we computed 
pairwise comparisons between interpretations of the same 
emoji rendering. For across-platforms computations, we 
computed pairwise comparisons for interpretations of differ-
ent renderings of an emoji character (e.g., the Apple and the 
Google renderings). For an across-platforms misconstrual 
score, we first computed the score for each possible pair of 
platforms (e.g., Apple-Google, LG-Samsung, etc.), and then 
averaged across these platform-pair scores to get the overall 
across-platforms sentiment misconstrual score. 
 Likewise, our approach to standalone computations 
(within or across platforms) was the same as that of Miller 
et al. We computed the misconstrual score for each 
standalone rendering, and then averaged these scores to get 
the misconstrual score for each standalone emoji character. 
For context computations (within or across platforms), we 
computed sentiment misconstrual scores for each tweet con-
taining a given emoji rendering, and then averaged these 
misconstrual scores to get the sentiment misconstrual score 
for each rendering in context. Finally, we averaged the 
scores for all renderings of an emoji character to get the in-
context misconstrual score for that emoji character. 
 Misconstrual scores are not conventional statistics, so we 
needed to employ statistical resampling in order to estimate 
their precision. To do so, we used jackknifing resampling, 
which involves repeatedly re-computing our metrics with 
one data point removed (Efron and Tibshirani 1994). This 
process allowed us to estimate statistical properties (e.g., 
standard deviation) of arbitrarily complex metrics. Typi-
cally, a bootstrapped resample might be used in this type of 
study, since it is a newer and better-studied resampling 
method. However, in the course of our evaluation we found 
that bootstrapping introduces a bias when used with pair-
wise difference metrics like our misconstrual score. Jack-
knife resampling does not have this problem. 

 We “jackknifed” our data by participant rather than by 
raw sentiment scores because ratings by the same participant 
cannot be assumed to be independent. Also, since a partici-
pant may not have interpreted every emoji, we performed 
jackknife resampling individually for each emoji, where 
each incorporated only those participants who had inter-
preted the given emoji. After completing the jackknifing, we 
computed the standard error of the four misconstrual scores 
for each emoji. These standard error values allow us to com-
pute confidence intervals and perform statistical tests. As 
our metric is an average (of differences), the central limit 
theorem implies that the metric will follow an approxi-
mately normal distribution. Therefore, we used t-distribu-
tion based confidence intervals and statistical tests. 
 Finally, to directly answer our research question, we com-
pared each emoji’s standalone and context misconstrual 
scores, specifically Within-Standalone to Within-Context, 
and Across-Standalone to Across-Context. Thus, we tested 
the null hypothesis that the interpretation of each emoji char-
acter is equally ambiguous with or without textual context. 
We made these comparisons using a Welch’s t-test (Welch 
1947), modified to use the standard error of each score (from 
jackknifing) instead of standard deviations divided by the 
square root of the sample size. Finally, because we made 
these comparisons for each emoji separately, we apply the 
Holm method (Holm 1979) to adjust our p-values for multi-
ple comparisons. With these adjusted p-values, we per-
formed the statistical tests at a significance level of 0.05. 
 We included data for all of the 77 emoji renderings in our 
study (averaged across the renderings to get each emoji 
character’s values). While this analysis combined previous 
and current renderings, we also performed our analyses on 
the current versions of emoji characters alone, as well as on 
the previous versions studied by Miller et al. (2016) alone. 
As we will discuss below, this analysis provided key insight 
into our high-level results. 

Results 
Table 2 presents the four misconstrual scores and associated 
95% confidence intervals for each emoji character in our 
study. The “Difference” columns for the “Within” and 
“Across” platform conditions show the estimated difference 
in misconstrual between a standalone emoji character ver-
sus the same character in textual context. This is computed 
simply by subtracting each context score from the associated 
standalone score. If the resulting value is positive, then on 
average the emoji is less ambiguous in context. But if the 
result is negative, then on average the emoji actually is more 
ambiguous in context. Finally, we indicate the results of our 
hypothesis tests by highlighting in bold the differences that 
are statistically significant. We also display the confidence 
interval for each statistic. 



 

 

 Crucially, the lack of bold positive numbers in the “Dif-
ference” columns in Table 2 shows that we found little to no 
support for the hypothesis that textual context reduces the 
potential for miscommunication when using emoji. One 
emoji character – “person raising both hands in celebration” 
(Unicode U+1F64C) – had a significantly lower miscon-
strual score when considered in context (both within- and 
across-platform, both p<0.0001). However, another charac-
ter – “relieved face” (Unicode U+1F60C) – has a signifi-
cantly higher (p<0.001) misconstrual score (within-plat-
form only), meaning that there is more potential for miscon-
strual with this emoji character when it is used with text.  
 Further, examining the non-significant results in Table 2 
makes it clear that the differences between standalone and 
in-context misconstrual exhibit no clear directional ten-
dency. Some emoji characters trend towards a lower mis-
construal score when considered in context; others trend to-
wards a higher misconstrual score considered in context.  
 While Table 2 examines our misconstrual results at the 
level of emoji characters, Figure 1 shows these results at the 
rendering level. Our basic finding at the emoji character 
level also holds at the rendering level: context does not con-
sistently reduce misconstrual. In Figure 1, there are 20 sub-
graphs: one for each of our 10 emoji characters both within 

and across platforms. Each subgraph depicts the miscon-
strual of each rendering of the given emoji character in each 
tweet in which it appears (each  in the figure). Each trian-
gle represents a rendering’s (average) misconstrual score in 
all its tweets and relates this in-context score to its 
standalone misconstrual score (denoted as  ): a triangle 
points up  for an in-context misconstrual score greater 
than the standalone score (  for statistically significant dif-
ferences), and down  if it is less (  if significant).  
 If the Miller et al. hypothesis were supported by our data 
– that is, if textual context reduces emoji’s potential for mis-
communication – we would see a trend of and  trian-
gles. But this trend is not present in Figure 1. Further, like 
the character-level results, there are few statistically signifi-
cant differences.   
 Figure 1 also lets us assess visually whether any outlier 
tweets might be driving our results. While there are some 
tweets where misconstrual was much higher or lower than 
most tweets with a given rendering, these outliers are few.  
 Returning to Table 2, the effect sizes for the difference in 
misconstrual between the two conditions (i.e., the values in 
the “Differences” column) can be difficult to interpret in iso-
lation, so we sought to provide context by establishing a 
threshold below which any differences in misconstrual can 

 WITHIN ACROSS 

Emoji Unicode and Name STANDALONE 
(Confidence Interval) 

CONTEXT 
(Confidence Interval) 

DIFFERENCE 
(Confidence Interval) 

STANDALONE 
(Confidence Interval) 

CONTEXT 
(Confidence Interval) 

DIFFERENCE 
(Confidence Interval) 

1F606          
SMILING FACE WITH OPEN MOUTH AND 
TIGHTLY-CLOSED EYES 

2.197 
( 2.006, 2.389 ) 

2.074 
( 2.028, 2.120 ) 

0.124 
( -0.111, 0.358 ) 

2.314 
( 2.145, 2.537 ) 

2.162 
( 2.115, 2.209 ) 

0.179 
( -0.061, 0.419 ) 

1F601           
GRINNING FACE WITH SMILING EYES 

1.769 
( 1.640, 1.897 ) 

1.855 
( 1.813, 1.897 ) 

-0.086 
( -0.284, 0.075 ) 

2.129 
( 1.994, 2.264 ) 

1.976 
( 1.931, 2.020 ) 

0.153 
( -0.016, 0.323 ) 

1F64C        
PERSON RAISING BOTH HANDS IN CELEBRATION 

2.235 
( 2.074, 2.397 ) 

1.763 
( 1.718, 1.808 ) 

0.472* 
( 0.273, 0.672 ) 

2.245 
( 2.091, 2.398 ) 

1.767 
( 1.724, 1.811 ) 

0.477* 
( 0.287, 0.668 ) 

1F605         
SMILING FACE WITH OPEN MOUTH AND COLD SWEAT 

1.944 
( 1.785, 2.103 ) 

2.118 
( 2.071, 2.165 ) 

-0.174 
( -0.372, 0.024 ) 

2.029 
( 1.874, 2.184 ) 

2.156 
( 2.109, 2.202 ) 

-0.127 
( -0.319, 0.066 ) 

1F60C        
RELIEVED FACE 

1.626 
( 1.509, 1.742 ) 

1.941 
( 1.898, 1.985 ) 

-0.315* 
( -0.464, -0.167 ) 

1.799 
( 1.678, 1.920 ) 

2.007 
( 1.963, 2.051 ) 

-0.208 
( -0.362, -0.054 ) 

1F648        
SEE-NO-EVIL MONKEY 

1.879 
( 1.705, 2.053 ) 

2.057 
( 2.010, 2.104 ) 

-0.178 
( -0.392, 0.037 ) 

2.074 
( 1.894, 2.255 ) 

2.120 
( 2.074, 2.166 ) 

-0.046 
( -0.268, 0.177 ) 

1F64F        
PERSON WITH FOLDED HANDS 

2.129 
( 1.926, 2.332 ) 

2.105 
( 2.056, 2.154 ) 

0.024 
( -0.225, 0.274 ) 

2.541 
( 2.321, 2.761 ) 

2.226 
( 2.175, 2.276 ) 

0.315 
( 0.046, 0.584 ) 

1F60F        
SMIRKING FACE 

1.686 
( 1.540, 1.833 ) 

1.911 
( 1.866, 1.911 ) 

-0.224 
( -0.407, -0.042 ) 

1.745 
( 1.599, 1.891 ) 

1.932 
( 1.888, 1.976 ) 

-0.187 
( -0.368, -0.005 ) 

1F631        
FACE SCREAMING IN FEAR 

2.135 
( 1.969, 2.301 ) 

2.024 
( 1.970, 2.078 ) 

0.111 
( -0.097, 0.319 ) 

2.189 
( 2.012, 2.367 ) 

2.068 
( 2.015, 2.122 ) 

0.121 
(-0.100, 0.342 ) 

1F602         
FACE WITH TEARS OF JOY 

2.142 
( 1.947, 2.336 ) 

2.364 
( 2.314, 2.414 ) 

-0.222 
( -0.461, 0.018 ) 

2.170 
( 1.961, 2.379 ) 

2.395 
( 2.346, 2.444 ) 

-0.225 
( -0.481, 0.031 ) 

Table 2. The four sentiment misconstrual scores and associated confidence intervals for each emoji (renderings depicted with previous 
version underlined): standalone versus in context for both within- and across-platform analysis. The difference columns are the context 

scores subtracted from the standalone scores: when the value is positive, on average the emoji is less ambiguous in context, and vice versa. 
Differences that are bold are statistically significant at a level of 0.05; the lack thereof shows little support for the Miller et al. hypothesis. 



be considered negligible. To do so, we compared the values 
in the “Differences” column to the misconstrual score of a 
minimally ambiguous emoji rendering, letting us check if 
any of the misconstrual differences are larger than one 
would expect in a minimally ambiguous context (i.e., larger 
than “interpretation noise”). We guessed that our control 
rendering  would serve as a good minimally ambiguous 
rendering, and this hypothesis was supported: we computed 
the misconstrual score for each time participants interpreted 
this rendering—twice when presented standalone, and twice 
when presented in context (“love ”). This yielded four 
misconstrual scores for this rendering: 0.727 and 0.722 for 
its first and second standalone appearances, respectively, 
and 0.735 and 0.758 for its appearances in context. These 
values are all substantially below the standalone and context 
misconstrual values for the emoji in Table 2. As such, we 
conservatively choose 0.7 as a minimal threshold for differ-
ences in misconstrual to be considered meaningful, rather 
than just “interpretation noise.” 
 Using our 0.7 threshold, we see that the effect sizes in the 
“Differences” column in Table 2 provide additional support 

for the conclusion that text has little to no disambiguating 
effect on emoji interpretation. The misconstrual differences 
between the standalone and context conditions, even for the 
few statistically significant results, are less than our “inter-
pretation noise” threshold. Furthermore, the confidence in-
tervals for each difference place a bound on how large of an 
impact context makes on emoji interpretation. None of the 
characters have differences that exceed the threshold of +/-
0.7. In fact, we can be confident that more than half (12/20) 
of our differences are smaller than 0.4.  
 Finally, to understand our findings in more detail, we re-
peated our analyses separately for the Miller et al. render-
ings and for the current renderings. A standout result from 
these analyses was for the “Grinning Face with Smiling 
Eyes” emoji character (Unicode U+1F601). Miller et al. 
found that this character had high variation in interpretation 
across platforms and thus high potential for misconstrual, 
particularly due to Apple’s previous rendering  (this ren-
dering has been substantially altered since the publication of 
Miller et al.; see Table 1). In our analysis using the Miller et 
al. renderings alone, we identified that there is a statistically 

 
Each represents the misconstrual score of a tweet with the given rendering (renderings occupy the horizontal axis).  
Each  represents the standalone misconstrual score of the given rendering. 
A triangle represents the rendering’s context misconstrual score: 

if less than the standalone misconstrual score and if this relationship is statistically significant (p<0.05). 
if greater than the standalone misconstrual score and  if this relationship is statistically significant (p<0.05).  

Figure 1.  Low-level visualization of misconstrual scores per emoji rendering, both within platform (top graph) and across platforms (bot-
tom graph): The higher the point on the y-axis, the more potential there is for miscommunication, and vice versa. The variety of upward 

and downward pointing triangles illustrates the lack of a clear trend, in addition to the lack of statistically significant results. 

 



 

 

significant reduction in the misconstrual score of this emoji 
character with textual context present for communication 
across platforms (p<0.01). Rendering-level results in Figure 
1 verify that Apple’s previous rendering is the main contrib-
utor to this effect (p<0.001). This suggests that in very ex-
treme cases, there may be support for the hypothesis that text 
reduces the potential for emoji-related miscommunication. 
We return to this point in the Discussion section below. 

Discussion 
 Our study suggests that text does not have the hypothe-
sized disambiguation value for emoji. In this section, we dis-
cuss the implications of this finding more broadly. 
 An important question is why doesn’t text reduce emoji 
ambiguity? One reasonable hypothesis is that sarcasm plays 
a role. Our survey contained an open-ended text box to 
gather feedback from participants, and several participants 
highlighted the role of sarcasm in their assessments: 

 “some of the emojis seemed sarcastic” 
“Wasn't sure how to analyze the sarcastic texts”  

 Another insight as to why emoji were still ambiguous in 
context that was pointed out by a participant was that the 
texts containing the emoji were too short: 

“A couple of the texts could use a little extra context to 
tell what the emoji is supposed to reflect. For instance, 
the "I didn't expect to see her unexpectedly" text could 
be either positive or negative based on context.” 

With Twitter’s 140 character length restriction, using tweets 
as our source of texts limited the amount of context accom-
panying emoji in our study, whereas many platforms for 
emoji usage are not limiting in that respect. Similarly, while 
using Twitter as we did (e.g., with the filtering steps outlined 
above) allowed us to maximize general interpretability and  
successfully examine general consistency of interpretation 
(as reflected in broadcast communication like Twitter), this 
approach limited the amount of interpersonal context (or 
common ground (Clark 1996)) in the simulated communica-
tion. Future work should seek to explore emoji ambiguity in 
longer-form texts and in longitudinal communication in 
more established relationships. 
 Interestingly, while our study controls for the presence or 
absence of text to study emoji ambiguity, the reverse rela-
tionship is also worthy of examination. In other words, fu-
ture work should seek to investigate whether emoji affect 
the ambiguity of the text they accompany. Participants re-
flecting in the open-text box suggested that this could be the 
case. For example, one participant wrote: 

 “[emoji] do have their value in that they give you a 
sense of security that you've gotten across the right 
tone in an email.  Whenever I feel I need to be most 

clear rather than risk a misunderstanding, I insert an 
emoji” 

This sentiment was reflected in some qualitative responses 
in Cramer et al.’s (2016) recent work on emoji as well. 
 Lastly, it is interesting to reflect on textual context’s ef-
fectiveness in reducing the ambiguity of Apple’s (former) 
rendering  of the “grinning face with smiling eyes” char-
acter (U+1F601). Miller et al. identified a roughly bimodal 
distribution for sentiment interpretations for this rendering. 
Our results suggest that in these types of extreme ambiguity 
cases in which there are two clear senses that must be dis-
ambiguated, text may possibly help to distinguish between 
the two very different meanings. Examining this conjecture 
in detail would be a useful direction of future work. 

Limitations 
Although our study design was intentionally robust against 
a number of factors (e.g., idiosyncratic specific textual con-
texts, participant variation), it is not without limitations. 
First and foremost, to maximize ecological validity, we ren-
dered the emoji images in the survey at a size that corre-
sponds with their typical size in common use (rather than 
enlarged versions for easier viewing). This proved difficult 
for some participants that took the survey on desktop moni-
tors. For instance, one participant wrote to us in an open 
feedback box at the end of the survey: 

“The emojis were so small that it was difficult to deter-
mine what they were, even on a 17" monitor.” 

This limitation suggests an interesting research question: 
how might the size of emoji affect interpretation? This could 
be an interesting and important direction of future work, par-
ticularly considering new ways emoji are being integrated 
into communication tools at different sizes. For example, in 
Slack and Apple Messages, when sending messages that 
solely contain emoji (standalone), the emoji appear larger 
than when you send them accompanied with text (in con-
text). 
 Finally, as we mentioned above, even though we took pre-
cautions to limit the exogenous context required for inter-
preting tweets in our study, it is impossible to mitigate this 
concern entirely. For instance, some tweets may have been 
part of a larger series of tweets meant to be read in sequence 
(although the percentage of tweets in our study for which 
this was likely the case is very unlikely to have biased our 
results substantially). 

Conclusion 
When Miller et al. (2016) found extensive variation in the 
interpretation of some standalone emoji, it seemed natural 
that this variation would diminish, at least somewhat, if one 
considered the text that often accompanies emoji. However, 



analyzing the results of a survey with over two thousand par-
ticipants, we found little to no support for this hypothesis. In 
fact, the preponderance of evidence suggests that text can 
increase emoji ambiguity as much as it can decrease it.  

Open Data 
The data we gathered for our experiment will be made avail-
able through ICWSM’s data sharing initiative. 
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